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Service parts management is an integral component of customer 

satisfaction.  The service parts supply chain has a number of unique challenges 

that differentiate it from retail and manufacturing supply chains.  These 

challenges include: unpredictable and lumpy demand, limited storage capacity, 

high demand service rate requirements, and high risk of obsolescence.    

This research focuses on the use of substitution as a policy tool to aid in 

service part supply chain management; particularly with respect to low inventory 

and high dollar value components.  In one part of this dissertation, a Markov 

chain is used to model unidirectional substitution with dissimilar part reliability.  In

addition, this work investigates probabilistic substitution policies that allow 

substitution to be employed on a partial basis. 
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This research also utilizes a Poisson process to explore steady state 

optimization with probabilistic substitution for a model in which a non-primary part 

is utilized solely as a substitute for primary parts.  

The models demonstrate that both substitution protocols can significantly 

enhance customer performance benchmarks.  Unidirectional substitution policies 

improve fill rate and backorder levels for the machine upon which substitution is 

performed. The price of this improvement is the cost of additional ordering and 

inventory, along with decreased fill rate and backorder performance, on the 

machine whose parts are used for substitution. 

Substitution, using a part solely carried for that purpose, increases 

performance levels without higher inventory levels of either primary part. 

However, this type of substitution requires the inclusion of an additional inventory 

part and the associated costs.  

 
 
Keywords: Markov chain, unidirectional substitution, service parts supply chain 
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CHAPTER 1 
 

INTRODUCTION 
 
 
Customer service often involves a tradeoff between cost and response 

time.  As the customer base spreads further from the primary manufacturing and 

distribution centers, the cost for a given level of service grows.  By reducing the 

cost of maintaining sufficient inventory we can increase service levels at all levels 

of expenditure and, in effect, provide better service for no incremental 

expense.   As in other applications, management of the service part supply chain 

is a major factor in managing costs; however, the service part supply chain has a 

number of characteristics that differentiate it from new product supply chains.  

Service parts supply chains differ from other supply chain applications because 

when inventory shortages are encountered, the customer will experience an 

interruption to a working system requiring the part that is already integrated into 

the production process, and this shortage can cascade throughout the operation.  

Problems encountered include lost production, or risk of serious damage to life 

and health if life safety or environmental control systems are impacted. 

A great deal of work has been done relating to the policy for managing 

inventory in the warehouse on topics such as minimizing holding cost and 

optimizing inventory policy.  Far less work has been accomplished with respect to 

the type of supply chain used in remote service warehouses.  In addition, the 
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research on substitution within the service supply chain is not mature, and there 

is significant opportunity for growth in the literature with respect to utilization of 

substitution in the service parts supply chain.  

In this paper we will look at a variation of the normal inventory 

management policy; substitution as a method of improving parts availability and 

lowering cost for remote parts storage warehouses – particularly with respect to 

high cost components that are not stocked in large quantity.  In today’s 

increasingly global economy, firms’ find themselves with significant customer 

installations far from the manufacturing center and primary warehouse bases.  

For example, an American manufacturer may have its production and distribution 

centers in the United States, but might have an important customer located in an 

area far distant from the manufacturing and storage base; for example a US firm 

supporting a customer in Sicily.   The company may have no other customers 

nearby, but making sure that this customer is serviced properly is an important 

concern because this customer is an important component of the firm’s 

business.   As a result, it is important to make sure that parts to service this 

customer’s machinery are available locally in order to minimize downtime. 

One of the primary defining requirements for service part policy is that 

customers are highly intolerant of unscheduled downtime.  If a component failure 

occurs, it is critical to bring the system back on line immediately.  This means 

that the lead time for service parts is often very short. 

Another important point of differentiation for service part inventory policy 

vs. standard production and inventory policy is the fact that service part demand 



www.manaraa.com

3 

is often unpredictable and can be very low for a given part.  This characteristic 

makes many statistical models for ordering, producing, and stocking of 

components invalid.  It is not always reasonable to assume we have good 

information or that we have well established demand arrival distributions. 

A third characteristic of service part production and inventory management 

policy is that the demand may be deteriorating over time, or product features may 

change, and this can result in an extreme risk of obsolescence.  As a result, it is 

generally desirable to limit the amount of parts in storage or the size of 

production runs.  In addition, given the low and unpredictable demand rate, it is 

not always feasible to interrupt normal production in order to produce a small 

product run on very short demand lead time to meet customer demand for 

service parts.  Finally, as many of these service facilities are located in countries 

far distant from the factory, the shipping times and customs clearance times are 

not insignificant and introduce a great deal of variability into supply lead times.  

The end result of these factors is that service part inventories are typically small 

and it is not safe to assume that we can rely upon the factory or suppliers to 

immediately produce a replacement component. 

The three traits we have mentioned create a scenario where substitution 

of one component for another component is very attractive.  The use of 

substitution can reduce inventory levels and lead times while increasing service 

fill rates.  The utilization of substitution for these purposes is the focus of this 

research.  
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The information in this dissertation is presented in the following fashion.  

First, we review the state of the literature for the service parts supply chain.  Next 

we examine the literature of substitution.  As we do so, we emphasize the 

progressive contributions and areas of focus in the existing literature.  We also 

discuss limitations of the current literature; particularly with respect to the gaps 

that we address as our contribution to the field in this document. 

Chapter 3 introduces the substitution problem and utilizes a decision tree 

approach to model a problem that is limited in scope to a small number of 

machines, assumes short lead times, and extends over a finite time horizon.  

This problem serves as an introduction for the reader to concepts that we 

address in depth in later chapters and also is used to probe for those 

relationships most fruitful for further study in the more complicated modeling that 

follows.   

In Chapter 4 we present the results of a Markov Chain analysis for the 

unilateral substitution problem.  This problem is extensive in scope and the 

Markov chain approach allows us to pursue true steady state solutions for this 

class of problem.  We implement the Markov Chain model without relying upon 

Poisson or exponential distribution assumptions and model with dissimilar 

reliability and probabilistic substitution. 

In Chapter 5 we present our general substitution model with probabilistic 

substitution for a realistically large case and utilize a Poisson model to project 

true steady state results for our analysis. 
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In this work the primary areas that we research relate to substitution of 

components in the service part supply chain.  We seek to introduce three 

enhancements to the literature.  First, we include in our unidirectional model the 

examination of substitution using parts having dissimilar reliability from the part 

for which they are the substitute.  Second, in all of our research, we consider 

probabilistic substitution; that is, we consider partial substitution policies in 

addition to policies that always substitute, and policies that never substitute.  

Finally, our general substitution model considers the case where a part is 

stocked exclusively for the purpose of substitution.  Past work has focused on 

unidirectional or bidirectional substitution of one primary part for another primary 

part or has focused on translateral shipment of equivalent parts for the purpose 

of meeting inventory shortfalls.  We feel that our general model captures the 

dynamics of a strategy that is commonly employed in practice, typically in an 

unplanned, ad hoc fashion. 

We believe that those interested in service parts supply chains and 

substitution should find the following work presents some new methods of 

approaching these problems.  We also believe that the service parts supply chain 

researcher, as well as those interested in substitution as a supply chain tool, will 

find a number of avenues that we explore to be a fruitful starting point for further 

exploration of these fascinating topics. 



www.manaraa.com

6 

CHAPTER 2 
 

REVIEW OF THE LITERATURE 
 
 

Service parts production and inventory management has received far less 

research than general production and inventory problems in the literature.  There 

are a number of key issues involved in handling service parts that make 

determination of inventory and production policy different, and more challenging, 

than the determination of a policy for conventional inventory or production.  

These challenges include an often very high service rate requirement due to the 

fact that parts failures can cause massive loss of production.  Other problems 

encountered in the service parts supply chain, including low demand or lumpy 

demand (demand that occurs in clusters rather than dispersed evenly overtime), 

violate important assumptions of standard statistical models for economic 

ordering quantities and preclude the use of those well tested methods.  In 

addition, there is frequently great uncertainty about demand, as well as a 

changing profile of demand, that render steady state models inapplicable. 

One of the key decisions in service part management is allocating limited 

stock when there are not enough parts to meet all service requirements.  A 

significant portion of service part research has been aimed at addressing the 

conflict that arises when, due to limited stock and high demand uncertainty, 

management must choose not to satisfy some demand immediately.  How do we
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choose what demand to satisfy when there is a high fill rate requirement 

associated with multiple customers and inadequate ability to meet that demand?  

One solution to this problem is rationing through a classification system.  Veinott 

(1965) was the first to publish on the problem of rationing stock to several 

demand classes in inventory systems. He studied a periodic review inventory 

model with N classes of demand, zero lead time and limited ordering.  Veinott‘s 

model implemented a policy of stock deployment discrimination at a critical level.  

The critical level policy is implemented as follows.  Above the critical level, 

inventory is deployed as per demand.  However, some level of inventory is 

reserved for critical demand and only that demand which is categorized as critical 

is satisfied when inventory is at, or below, the critical level.  A demand may be 

classified as critical if the component failure would result in the lack of use of a 

piece of equipment or would harm the usage of an important piece of equipment.  

Similarly, demand may be tagged as critical if it is demand for a very important 

customer. 

Nahmias and Demmy (1981) were among the first to consider multiple 

demand classes for continuous-review inventory models.  They analyzed a (Q, r) 

inventory model having a critical stock level policy for a case with two classes of 

demand, Poisson demand arrivals, backordering, and constant lead time.  

Nahmias and Demmy (1981) made the rather limiting and important assumption 

that there could be a maximum of one outstanding order at any time. 

A common problem that occurs with service parts is that demand for a 

given part is often very low, unpredictable, or lumpy.  The problems associated 



www.manaraa.com

8 

with very low, unpredictable, or lumpy demand have also been addressed 

through rationing.  For example, Dekker et al. (1998) discuss inventory control of 

infrequently needed spare parts; this work included a model for critical stock level 

policy for a case with two classes of demand, Poisson demand arrivals, 

backordering, and deterministic lead time. This model does not make the 

assumption of at most one outstanding order. The authors derive service levels 

for both classes as the probability of no stock out.  

Another feature that distinguishes service parts management models from 

standard inventory and production models is the fact that lead times are often 

extraordinarily short while fill rate requirements are, at the same time, 

extraordinarily high.  Of course, there are multiple types of service, and not all 

service is an emergency; as a result there may be great variation in the lead time 

for any given demand.  The earliest work in this area was accomplished by 

Simpson (1958) who introduced the concept of demand lead times (DLT) for 

base stock, multi-stage production systems.  He used the term "service time" to 

describe inventory distribution systems where demand may not require 

immediate delivery, thus allowing a fixed delay.  A primary observation by 

Simpson (1958) in this work is that demand lead time has an effect upon optimal 

policy opposite to the effect of supply lead time; that is, DLT reduces the required 

inventory to achieve the target service level. 

Kocaga and Sen (2007) extend the research into rationing by combining it 

with the consideration of demand lead times.  Their work considers a continuous-

time, single-item, lot-for-lot, model with backordering under the simplifying 
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assumptions that there is a single item in consideration and critical levels are 

time invariant. 

The next work that we consider advances upon earlier research, and 

considers new data observed each time a failure occurs as well as historical 

demand information.  Aronis et al. (2004) put forth a model and case study 

results for a Bayesian approach to forecasting the demand for spare parts.  The 

method presented in the research by Aronis et al. (2004) assumes that the failure 

data originate from a stationary process - that is, the model does not account for 

demand change resulting from changes in the number of units installed in the 

field.  By considering the new data observed each time a failure occurs, as well 

as historical demand information, this model is designed to more accurately 

forecast the demand for spare parts,.  This modification of the demand function 

using more current failure information is more sophisticated than the static 

models presented earlier.   

Moore’s (1971) work, “Forecasting and scheduling for past-model 

replacement parts” is precursor to much of the published research on service 

parts.  Moore points out that as time passes the cost of maintaining service parts 

for obsolete equipment becomes increasingly burdensome.  Since EOQ models 

assume a steady state they will consistently overshoot the demand for obsolete 

service parts and generate excessive inventory.  Moore’s work focuses on an all 

time requirement for service parts.  An all time requirement is the total demand 

for the part from the point of the forecast throughout the remaining service period 

(RSP).  The all time requirement for a part through the remaining service period 
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is an upper limit for the summation of all remaining demand throughout time for 

the service part and so the all time requirement is also referred to as the all time 

demand.  If the all time demand 

choose to make an all time production run and gain a number of benefits from 

removing the obsolete part, and the overhead needed to produce it, from 

operation.  Moore (1971) shows that by transforming sales dat

arithmetic scale to a logarithmic scale it becomes apparent that three families of 

curves—the parabola, ellipse and straight line are common to 85% of the parts 

considered.  Moore’s data is shown in Table 2.1 which is taken from page B208 

of the above referenced work. 

 
Table 1.1 Moore’s Selection of Best Forecasting Curve
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Moore (1971) then puts forth a dynamic inventory model to be compared 

against existing production schedules and adjust production of the part as 

needed, including the decision to make an all time run of production if warranted, 

so that the part may be removed from further production consideration.  

Fortuin (1980) expands upon the work of Moore (1971) and derives 

formulae for the availability (service level), shortage risk, and obsolescence risk 

for service parts in the residual service period.  In modeling demand for service 

parts, the expected demand for a service part in a given year was determined by 

multiplying a regression factor by the demand in the prior year.  Subsequently, 

Fortuin (1981) presents a model to introduce significant saving through the 

utilization of a fictitious reduction of the remaining service based upon 

acceptance of a reduction in the service level near the end of the RSP.  Under 

this method, the all-time requirement is calculated for a number of years less 

than the true RSP, resulting in a considerable reduction in investment in stock.  

The derived formulae demonstrate a 26% reduction in the all time requirement 

for the case where the RSP is fictitiously reduced from 10 years to 4 years.  In 

this case, availability remained above 75% at the end of the RSP. 

Cohen and Barnhart (2006) investigated the high-cost, low-demand 

stocking problem.  The authors discuss how the decision of how to stock repair 

parts which are both high cost and low demand becomes extremely 

computationally challenging when the scope is expanded to consider what 

happens when warehouse capacity constraints are added.  The authors 

demonstrate that a basic modeling approach to this new problem is very difficult, 
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or cannot be analytically solved in polynomial time, for many realistic sized 

instances of the problem.  Cohen and Barnhart (2006) then present a composite-

variable model and demonstrate how it improves tractability significantly.  By 

grouping common constraints as one variable the authors demonstrate that the 

ability of heuristics to find solutions to the problems is greatly improved. 

Fortuin and Martin (2000) set forth a number of the problems encountered 

when considering service part stocking strategy.  Chief amongst these problems 

is the fact that conventional inventory theory breaks down due to a number of 

factors including: slow moving parts, lack of demand history, dependence upon 

localized conditions, and a short product life cycle.  Fortuin and Martin (2006) 

draw the distinction between repairable parts and non-repairable parts and 

concentrate upon the latter.  The authors also distinguish among three key life 

stages in the life cycle of the product.  The first phase is the initial phase where 

very little is known about the reliability of components.  The second phase is the 

normal phase where demand patterns are still scarce, but some information may 

be known - especially for fast moving parts.  Finally there is the final phase where 

it may be necessary to place an all time order.  Distinction is made between three 

utilizations of service parts: (1) technical systems under client control, (2) 

technical systems sold to customers, installed at the customer's site for the 

purpose of providing products or services, and (3) end products being used by 

customers.  The authors explore two methods for removing some of the 

problems caused by the lumpy demand for service parts: (1) increasing demand 

and (2) reducing criticality.  By increasing demand better forecasting can be 
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accomplished for the parts.  As was mentioned in the work by Simpson (1958), 

reducing criticality can increase the demand lead time and decrease the 

inventory required for a given service level.  

Botter and Fortuin (1999) point out many of the same difficulties noted 

elsewhere in the literature with respect to determining service part stocking policy 

including: the lumpy nature of demand, poor demand data, and high service level 

requirements.  In this work, the researchers present a model to handle service 

parts inventory through the use of varying levels of criticality and the calculation 

of logistical parameters for the entire criticality classification. 

Wong et.al (2007) analyze a two-echelon, multi-item, spare parts system 

with supply flexibility through lateral transshipments, and emergency direct 

deliveries, from the central warehouse or factory in the event of a stock-out.  The 

authors develop a heuristic to determine the optimal stock level at each satellite 

warehouse.  The model is structured as a combinatorial problem and is solved 

with a local search optimization method involving a greedy algorithm.  The 

authors compare a single-echelon system with a two echelon system and 

determine that the two-echelon system is only advantageous when lateral 

transshipments are not permitted. 

In our research we study the utilization of substitution as a mechanism for 

optimizing policy for service parts and consumables.  One of the earliest 

considerations of substitution in inventory was put forth by Wagner and Whiten 

(1958) wherein they model an optimal inventory policy for the steady state 

demand case, and also for a multi-period problem, when demand is known but 
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varies from period to period.  During the discussion the researchers suggest that 

the model they put forth for filling demand in period k+t with inventory acquired in 

period k suggests that the model could be extended to the case where demand 

for a lesser product could be filled by prior inventory of a superior product.  In this 

case, steel beams of superior quality could be substituted for those of lesser 

quality.  

One of the earliest works in which substitution was the focus of the 

research was limited to a single-period model as longer term models become 

substantially more complex.  This early work on substitution in a multiproduct 

inventory with stochastic demand was accomplished by Ignall and Veinott (1969).  

The authors put forth the results of their research in which they considered 

product substitution with proportional ordering costs and stochastic demand 

under a myopic ordering policy; that is, under a policy which considers 

minimization of only the current period costs.  In this analysis the authors restrict 

the model to one in which total order quantity does not change.  If the quantity 

ordered of one product increases, the quantity of other products ordered 

decreases by the amount so that the total order size remains the same.  This 

work was important in that the myopic ordering policy would be adopted as a key 

modeling feature in many future works by other researchers. 

 McGillivray and Silver (1978) considered single-period, multidirectional, 

two-product substitution.  In their case McGillivray and Silver (1978) assume that 

the items are essentially similar with identical variable costs and shortage 

penalties.  The authors assumed that the substitution per replenishment cycle 
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would be small relative to overall inventory.  The authors concluded that, even for 

this simple case, the savings could be significant if ordering policy for the two 

items together was considered as opposed to treating each item independently.   

In another important single-period substitution work the single-period, 

multi-product, inventory problem with one-way substitution and zero setup costs 

was visited by Bassok et al.(1999), wherein it was demonstrated that myopic 

base-stock policies are optimal under the assumption that the unit substitution 

cost is identical among the products considered.  

In production environments it is possible that one input can yield multiple 

outputs.  An important work in this area is that of Hsu and Bassok (1999) in 

which the researchers consider a single-period problem with one input that yields 

a random number of products.  They consider single-period optimization where 

there is the possibility of full downward substitution of products and demonstrate 

how to devise an efficient algorithm from the network structure of the problem.   

Rao et al. (2004) consider one-way downward (higher quality to lower 

quality) product substitution for a multi-product inventory problem with stochastic 

demand and production setup costs.  This treatment was limited to a single-

period.  These researchers develop a heuristic solution to predict optimal setup, 

production, and inventory levels for the single-period case.  Extension of this 

model to a multi-period case would require relaxation of restrictions of the model 

resulting from the fact that levels are set at the start of the program and fixed 

throughout the processing of the algorithm. 
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Axsater (2003) put forth an approximation model for the multi-location 

inventory problem with unidirectional lateral transshipments.  Axsater's model 

assumes that a base-stock policy is used at all locations.  He also assumes that 

demand lead time is normally distributed and assumes a uniform distribution of 

the stationary inventory position without substitution.  He shows that the single-

warehouse model with unidirectional substitution can be modeled by treating 

products with varying quality as independent warehouses with lateral 

transshipment from higher quality to lower quality.  However, when the model is 

compared against a simulation assuming Poisson demand and constant lead 

time, the approximation errors are not insignificant. 

Liu and Lee (2006) consider one-way multiproduct substitution in the 

downward direction.  This model is the most significant influence upon our 

research; particularly with respect to the work in Chapter 5.  While the earlier 

approaches were limited to substitution upon demand arrivals, Liu and Lee 

(2006) extend the analysis to consider substitution upon supply arrivals.  The 

authors develop a model and use a decomposition technique to reduce 

computational load approximate performance for the case of two-product and 

three-product substitution scenarios. 

One area we will explore during this analysis is the effect of current 

service part and consumable part substitution decisions upon future demand.  

Care must be taken in that these decisions will change the expected lifetime of 

the part.  This may result in modified ordering patterns when the customer 

realizes the lifetime has changed.  Until the customer adapts to the modified life 
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cycle ordering decisions may tend to overstate or understate the true demand for 

parts.  The earliest literature on this phenomenon was accomplished by Forrester 

(1958) in which he noted that information, sent in the form of orders up the 

supply chain, could distort variability in orders such that there was high variability 

in ordering even though there was not as significant or even very small variation 

in actual demand. 

Sterman (1989) analyzes the results of “The Beer Game”, a simulation 

experiment in which the phenomenon now referred to as the Bullwhip Effect is 

manifested.  Sterman (1989) characterizes the causes and potential solutions for 

the increased order variability. He determines that individual decisions based 

upon misperception of signals produces compound effects that systematically 

drive performance away from optimality.  He presents an anchoring and 

adjustment heuristic for managing stock and demonstrates that the rule predicts 

the subjects’ behavior well.  Sterman (1989) identifies a number of feedback 

breakdowns that account for the increasingly poor performance of the players’ 

decision making.  The most important of these breakdowns is the failure of 

decision makers to note the effect their decisions have upon the overall 

environment. 

Lee et al. (1997) cite examples from Proctor and Gamble and Hewlett-

Packard and proceed to name and characterize this phenomenon as the 

“Bullwhip Effect”.  Four main causes of the bullwhip effect are (1) demand 

forecast updating, (2) order batching, (3) rationing and shortage gaming, and (4) 

price variations.  The authors discuss the role each of these causes has in 
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causing confusion within the supply chain and how this phenomenon causes 

extreme variation in the supply chain.   

 
Contribution to the Field of Literature of this Research 
 

The literature on service parts is not very extensive and has typically 

focused upon policy making with respect to rationing.  The literature with respect 

to substitution has not focused upon service parts; the limited work involving 

substitution for service parts have been single-period, one-direction models.  

When considering warehouse substitution, the existing literature exhibits a clear 

hole in that it does not consider that the substituted part may have a different 

reliability or service life than the component for which it is substituting.  This 

research helps fill that gap by considering the variation in reliability and service 

life between the primary component and the substitute in all of the models. 

Another clear hole in the existing service parts supply chain literature is 

that there has not been consideration given to the maintenance and utilization of 

components whose primary purpose is to serve as a general purpose substitute.  

We model substitution in service and consumable part supply chains that utilize 

the substitution of a component that is not part of the primary product bill of 

materials in order to increase fill rate, reduce costs, and smooth demand.  

This work also advances the literature since we model probabilistic 

substitution instead of using an all-or-nothing approach.  To the best of our 

knowledge this has not been done in this area of research to date. 
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Although we believe that this research will contribute to the general supply 

chain and to the substitution literature, we feel that it will be particularly useful to 

the service parts sector as it will focus upon the particular needs and constraints 

of that segment.  
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CHAPTER 3 
 

DECISION TREE ANALYSIS OF UNIDIRECTIONAL SUBSTITUTION 
 

 
Introduction 

 
One of the base criteria of this research is that the model will consider 

changing reliability when substitutions are made.  The resulting models are very 

computationally complex in their full implementation. So, before we embark upon 

that journey, we will step back and model the problem using a decision tree 

approach for policy making.  This is a common approach in Markovian modeling 

and we feel that it will serve us particularly well to begin with that process as it 

will help to direct the focus in later sections. 

The model that we are examining assumes that the reliability or useful life 

of the substitute is not the same as the primary part.  We feel this is a very 

realistic extension of the existing literature as we generally could expect that a 

substitute may perform better than the primary part, or it may perform worse than 

the primary part; however, a substitute clearly does not have the same 

specifications and is unlikely to have the same lifetime as a primary part.  Failure 

to recognize this can lead to serious error in predicting the cost of substituting 

and planning the supply chain to minimize interruptions. 
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Unidirectional Substitution Model 

We consider the case where there are two machine types. Machine type 1 

uses Part 1 as a primary component, but machine type 1 may also use Part 2 as 

a substitute for Part 1.  Machine type 2 uses Part 2 as its primary part with no 

allowable substitute.   

 
Nomenclature of Decision Tree Unidirectional Substitution Model 

C1  = Unit cost of Part 1 

C2  = Unit cost of Part 2 

S = Fixed ordering cost for total order of all parts 1 and parts 2 per order 

h1 = Holding cost of Part 1 per time period 

h2 = Holding cost of Part 2 per time period 

b1 = Cost of not operating machine type 1 during a given time period  

b2 = Cost of not operating machine type 2 during a given time period 

 I��  = Inventory level of Part 1 at the beginning of period t 

I��  = Inventory level of Part 2 at the beginning of period t 

T = Number of time periods 

x = Number of machines using Part 1 as a primary part 

y = Number of machines using Part 2 as a primary part  

x1 = Number of Part 1 installed on machine type 1 during time period t 

x2 = Number of Part 2 installed on machine type 1 during time period t 

x3 = Number of machine type 1 idle during time period t 

y1 = Number of Part 2 installed on machine type 2 
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y2 = Number of machine type 2 idle during time period t 

p��  = Probability that a Part 1 installed in machine type 1 will fail during       

         period 1 

p��  = Probability that a Part 2 installed in machine type 1 will fail during       

         period 1 

p��  = Probability that a Part 2 installed in machine type 2 will fail during       

         period 2 

F�,��   = Number of failures of Part 1 on machine type 1 during time period t 

F�,��   = Number of failures of Part 2 on machine type 1 during time period t 

F�,��   = Number of failures of Part 2 on machine type 2 during time period t 

 
Problem Description for Decision Tree Approach 
 

We consider the case with two machine classes, machine type 1 and 

machine type 2.  Part 1 works in machine type 1.  Part 2 works in machine type 2 

as a primary part and works in machine type 1 as a substitute part.  The possible 

flow of parts is as shown in Figure 3.1. The model assumes that demand is 

always met with a primary part if that primary part is in stock. In the event that 

substitution of one component for another occurs we assume that the substitution 

only occurs after all demand for the substitute product's primary use has been 

fulfilled. 
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Figure 3.1 Simplified Flow of Parts Through the System 

 
 

The model assumes that the cost for a part is realized when that part is 

removed from inventory to be placed into service.  This is a common method for 

allocating cost that allows us to effectively recognize the cost of part substitution.  

Movement from one state to another is determined by the priority rules where 

any down machine is brought up by the correct spare part for its machine type if 

that part is in inventory.  If both machine type 1 and machine type 2 require a 

part, and there is Part 2 in stock but no Part 1 in stock, then machine type 2 is 
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given priority for Part 2.  Once a substitution has occurred the substitute will be 

left in place until it fails. 

 
Transformation of State Rules for the Decision Tree Model 

In the decision tree model for the unidirectional substitution problem the 

movement from the state at time t to the state at time t+1 is governed by the 

systematic application of rules for transformation upon the arrival of demand for 

parts and the arrival of parts.  It is important to note that these are discrete event 

operations that happen upon the occurrence of any of the key events: which 

include part failure, or part arrival, for either part.  These rules are implemented 

during the algorithm by following the transformation guidelines in Table 3.1 and 

result in the transformation as shown in Table 3.2. 

 
Table 3.1 State Transformation Rules 
 

Rule 
Number 

Test
 

Transformation Rule 

1 If It1 ≥ 
F11 + F12 + x3� and It2≥ 
F22 + y2� 

 

�It1 − �F1,t1 + F1,t2 + x3�, �It2 − �F2,t2 + y2�� , �x1 + F1,t2+ x3�, �x2 − F1,t2 �, 0, 
y1 + y2�, 0� 

2 If It1 ≥ �F1,t1 + F1,t2 + x3� and It2≤ �F2,t2 + y2� 

 

�It1 − �F1,t1 + F1,t2 + x3�, 0, �x1 + F1,t2 + x3�, �x2− F1,t2 �, 0, �y1 + �It2 − F2,t2 �� , �y2− �It2 − F2,t2 ��� 

 

3 If It1 ≤ �F1,t1 + F1,t2 + x3� and It2≥ �F1,t1 + F1,t2 + x3+ F2,t2 + y
2
� 

 

�0,  It
2 − �F1,t1 + F1,t2 + F2,t2 + x

3
− y

2
− It

1�! , �x1+ �It
1 − F1,t1 �� ,  x2+ ��F1,t1 + x3� − It

1�! , 0, �y
1

+ y
2
�, 0� 

 

4 If It1 < �F1
1 + F1

2 + x3� and �F2
2 + y

2
�≤  It2< �F1

1 + F1
2 + x3 + F

2

2

+ y
2

� 

 

#0,0, �x1 + �It
1 − F1,t1 �� , �x2 + It

2 − y
2

− F1,t2 �, $x3

− %�It
1 + It

2 − F2,t2 − y
2

�
− �F1,t1 + F

1,t2 �&' , �y
1

+ y
2

�, 0( 

 

5 If It1 < �F1,t1 + F1,t2 + x3� and  It2< �F2,t2 + y
2

� 

 

#0,0, �x1 + �It
1 − F1,t1 �� , �x2 − F1,t2 �, $x3

− %It
1 − �F1,t1 + F

1,t2 �&' , �y
1

+ �It
2 − F2,t2 �� , �y

2
− �It

2 − F2,t2 ��( 
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Table 3.2 State Assignment After Movement From Old State to New State 
 

Part 1 demand results in the following 

When the Following Occurs Current State Variables 

Transform To This State 

Failure of a Part 1 in machine type 1 with Part 1 in 
inventory 


I�� − 1�, I��, x�, x�, x), y�, y� 

Failure of a Part 1 in machine type 1 with no Part 1 
in inventory but Part 
2 in inventory and substitution is approved. 

*+�, 
*+� − 1�, 
,� − 1�, 
,�+ 1�, ,), -�, -� 

Failure of a Part 2 in machine type 1 with Part 1 in 
inventory 


I�� − 1�, I��, 
x� + 1�, 
x�− 1�, x), y�, y� 
Failure of a Part 1 in machine type 1 with neither 
Part 1 in inventory nor Part 2 in inventory or with 
Part 2 in inventory and substitution is not 
permitted. 


I�� − 1�, I��, 
x� − 1�, x�, 
x)+ 1�, y�, y� 

Failure of a Part 2 in machine type 1 with neither 
Part 1 in inventory nor Part 2 in inventory or with 
Part 2 in inventory and substitution is not permitted 


I�� − 1�, I��, x�, 
x� − 1�, 
x)+ 1�, y�, y� 

Failure of a Part 2 in machine type 1 with no Part 1 
in inventory but with Part 2 in inventory and 
substitution is approved. 

I��, 
I�� − 1�, x�, x�, x), y�, y� 

Part 2 demand results in the following  
 
When the Following Occurs Current State Variables  

Transform To This State 

Failure of a Part 2 in machine type 2 
with Part 2 in inventory 

I��, 
I�� − 1�, x�, x�, x), y�, y� 

Failure of a Part 2 in machine type 2 
with no Part 2 in inventory 

I��, 
I�� − 1�, x�, x�, x), 
y� − 1�, 
y� + 1� 

Part Arrival results in the following 
Inventory of Part 1 arrives �I�� + 
S� − s���, I��, x�, x�, x), y�, y�  

Inventory of Part 2 arrives I��, �I�� + 
S� − s���, x�, x�, x), y�, y�  

Replenishment of stock after Part 1 inventory arrivals results in the following 

Iff x3 > 0 
I�� − 1�, I��, 
x� + 1�, x�, 
x) − 1�, y�, y� 
Replenishment of stock after Part 2 inventory arrivals results in the following 

Iff x3 > 0 and I��  ≤ 0 
I�� − 1�, I��, x�, 
x� + 1�, 
x) − 1�, y�, y� 
Iff y2 > 0 I��, 
I�� − 1�, x�, x�, x), 
y� + 1�, 
y� − 1� 
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Where 

• If I�� > 0  then x3 = 0 
• If I�� > 0  then x3 = 0 
• If I�� > 0 then y2 = 0 
• If I�� < 0 then y2 = 0 
• If I�� < 0 123  I�� then x) = 0 

 

 
Decision Tree Model Results 

In order to find a solution to this problem for a simple case it was 

determined to model the unidirectional substitution problem as a decision tree in 

order to examine the effects of various parameters on the expected value of 

supply chain costs.  The decision tree modeling allows the analysis of scenarios 

that are not steady state and extend beyond a single time period - two key 

enhancements of prior models.  The tree allows the exploration of the possibility 

that the service life for a substitute part may not be the same as its life on its 

primary application, or the same as the life of the primary component on the 

machine upon which it is substituting.  In addition, we can probe for longer term 

effects that cascade in subsequent time periods due to the substitution of the part 

with a dissimilar reliability.  Also, the decision tree model will allow us to examine 

the effects of probabilistic substitution.  This section will serve as a foundation for 

later modeling. 

In this model it is assumed that there are two part types.  Part 1 can only 

be used for application on machine type 1.  Part 2 can be used for its primary 

application on machine type 2 but it can also be used as a substitute for Part 1 

on machine type 1. 
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It is assumed that for the span of the decision tree model that no 

replacements can be received. This enables investigation of the realistic case 

where the only alternative to downtime is substitution.  In this model we have one 

machine type 1 running Part 1 and one machine type 2 running Part 2  

The analysis begins with an initial inventory of two units of Part 1 and two 

units of Part 2.  We assume that the units are inspected at fixed intervals and 

replacements are made as required if possible.  Holding costs are applied at 

each inspection cycle.  Backorder costs are also applied at each inspection 

cycle.  The backorder costs may reflect loss of customer goodwill, environmental 

penalties, or the costs of lost production. 

If a machine is idle the backorder charges are accrued at each inspection 

cycle.  The state of the system is described using the tag convention: {It1 , It
2 , x1, 

x2, x3,y1,y2}.  For example, in the following analysis the system begins in the 

ground state {2,2,1,0,0,1,0}.  This signifies that there are two Part 1 in inventory, 

two Part 2 in inventory, one machine type 1 running Part 1, no machine type 1 

running Part 2, no machine type 1 idle, one machine type 2 running Part 2, and 

no machine type 2 idle.  

In this analysis, starting from any given state, there are four possible 

outcomes.  The first possibility is that there is no change in the system state.  

The second possibility is a part on machine type 1 fails.  The third possibility is 

that a part on machine type 2 fails.  Finally, it is possible that a part fails on both 

machine type 1 and on machine type 2.  In order to prepare the algorithm it was 
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necessary to enumerate all possible states of the system.  The enumeration is 

shown in Table 3.3. 

 
Table 3.3 State Transformation Mapping for Decision Tree When Substitution 

is Allowed 
 

Old State 
(and New 
State if No 
Failures) 

New State if Part 
in Machine Type 1 
Fails But Part in 
Machine Type 2 
Does Not Fail 

New State if Part in 
Machine Type 2 Fails 
But Part in Machine 
Type 1 Does Not Fail 

New State if Part 
in  Machine Type 
1 Fails and  Part 
in Machine Type 
2 Fails 

2,2,1,0,0,1,0 1,2,1,0,0,1,0 2,1,1,0,0,1,0 1,1,1,0,0,1,0 

2,1,1,0,0,1,0 1,1,1,0,0,1,0 2,0,1,0,0,1,0 1,0,1,0,0,1,0 

2,0,1,0,0,1,0 1,0,1,0,0,1,0 2,0,1,0,0,0,1 1,0,1,0,0,0,1 

2,0,1,0,0,0,1 1,0,1,0,0,0,1 Cannot happen Cannot happen 

1,2,1,0,0,1,0 0,2,1,0,0,1,0 1,1,1,0,0,1,0 0,1,1,0,0,1,0 

1,1,1,0,0,1,0 0,1,1,0,0,1,0 1,0,1,0,0,1,0 0,0,1,0,0,1,0 

1,0,1,0,0,1,0 0,0,1,0,0,1,0 1,0,1,0,0,0,1 0,0,1,0,0,0,1 

1,0,1,0,0,0,1 0,0,1,0,0,0,1 Cannot happen Cannot happen 

0,2,1,0,0,1,0 0,1,0,1,0,1,0 0,1,1,0,0,1,0 0,0,0,1,0,1,0 

0,1,1,0,0,1,0 0,0,0,1,0,1,0 0,0,1,0,0,1,0 0,0,0,0,1,1,0 

0,1,0,1,0,1,0 0,0,0,1,0,1,0 0,0,0,1,0,1,0 0,0,0,0,1,1,0 

0,0,1,0,0,1,0 0,0,0,0,1,1,0 0,0,1,0,0,0,1 0,0,0,0,1,0,1 

0,0,0,1,0,1,0 0,0,0,0,1,1,0 0,0,0,1,0,0,1 0,0,0,0,1,0,1 

0,0,0,0,1,1,0 Cannot happen 0,0,0,0,1,0,1 Cannot happen 

0,0,1,0,0,0,1 0,0,0,0,1,0,1 Cannot happen Cannot happen 

0,0,0,1,0,0,1 0,0,0,0,1,0,1 Cannot happen Cannot happen 

0,0,0,0,1,0,1 Cannot happen Cannot happen Cannot happen 

 

 
Next, in order to evaluate the model, the Decision Tools Suite from 

Palisade software was used.  The logic was entered into PrecisionTree, after 

which the optimal path was tracked for a number of scenarios and sensitivity 
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analysis performed in order to determine the answer to a number of key 

questions including: 

• Was there significant benefit to the expected cost resulting from 

substitution? 

• Was there significant change to expected cost if the substitute part 

was more reliable or less reliable than the part for which it was 

substituted? 

• What parameters influenced the choice to substitute? 

• Which parameters had significant impact upon expected cost? 

In order to demonstrate the implementation of the model, a small section 

of the tree is shown in Figure 3.2.  Note that in this branch the user is faced with 

a substitution choice, and based upon the results of that choice the probability of 

failure and potential future states are altered.  Subsequent decisions depend 

upon whether the model proceeds along the substitute path or proceeds along 

the non-substitute path.  Since Part 2 will remain in machine type 1, even if stock 

of Part 1 later becomes available, the dissimilar reliability of the substitute will 

have effects into the future and will impact all expected values upon that path.  

Policy makers must recognize that this phenomenon is occurring and plan for the 

modified demand in future ordering.  The base case simulation values for costs 

and component reliability are shown in Table 3.4 and Table 3.5. 
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Figure 3.2 Branch of Decision Tree Showing Expected Value of Substitution 
Choices 
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Table 3.4 Base Case Costs for Decision Tree Model 
 

Cost Component Cost in $ 

C1 $7,000 

C2 $10,500 

h1 $210 

h2 $315 

b1 $10,500 

b2 $15,750 

 
 
Table 3.5 Probabilities Used in Decision Tree Model 
 

Probability Value 

899 0.5 

8:: 0.25 

89: 0.25 

 

 
Utilizing these parameters the financial results along the optimal path had 

an expected cost of $33,324.  Figure 3.3 demonstrates the cumulative probability 

of expected values for this scenario.  Figure 3.3 shows the cumulative probability 

that the expected value of the “optimal” path is less than a given value. 
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Figure 3.3: Cumulative Probability of Expected Value for Base Case Analysis 

 
 
In Table 3.6 the choices made upon the optimal path are shown.  It is very 

revealing to note that in almost every case upon the optimal path the choice to 

substitute was made when available.  This demonstrates that the availability of 

substitution does have significant financial benefit.  Table 3.6 illustrates the 

choices made at each substitution decision.  The optimal choice is the node that 

results in the lowest expected cost.  The chart gives the arrival probability for that 

decision node, i.e. the probability that the particular node will be traversed.  The 

chart shows the benefits of a preferred choice in the form of the reduction to 

expected cost for making the optimal choice. 
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Table 3.6 Choices Made on Optimal Path and Resulting Benefit 
 

 
 

 
After modeling the base case scenario, sensitivity analysis was performed 

wherein we altered the ratio of a number of model parameters in order to 

measure the impact on expected value (expected cost).  Figure 3.4 is a tornado 
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diagram that shows the impact upon expected value resulting from a 50% 

increase and a 50% decrease of five key parameter ratios.  

 

 
 

Figure 3.4 Tornado Diagram of Sensitivity Analysis 

 
 
From the tornado diagram in Figure 3.4 we can clearly visualize the 

sensitivity of expected value to changes in key parameters.  In order of 

decreasing importance those changes are: 

• Ratio of the cost of Part 2 to the cost of Part 1 

• Ratio of the backorder cost of Part 1 to the price of Part 1 

• Backorder cost 

• Probability of failure of Part 2 on machine type 1 

The probability of failure of Part 1 on machine type 1 was not particularly 

significant over this short time frame.  It is possible that some of this variation 
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was simply a linear expansion of total overall price increase affecting the cost 

and was not a variable that impacted the overall efficiency of the operation.  In 

order to determine which variables had significant effect on expected value a 

spider diagram (Figure 3.5) was prepared to determine if a linear relationship 

existed.  No one-to-one mapping can be seen in the spider graph so it is clear 

that the flexibility of the substitution model can offset price increases or efficiency 

drops.  In addition, individual charts of changes in expected value with respect to 

price were prepared to examine whether changes simply represented inflation, or 

if the changes caused a response in the model which could teach us something 

about the system. 

 

 
 

Figure 3.5 Spider Diagram of Sensitivity Measurement Changes 
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Figure 3.6 explores the results of changes to backorder costs on the 

expected value of the model.  Changes in backorder cost showed a decreasing 

impact as the overall backorder cost became larger.  This reflects improvements 

due to increased propensity to substitute. 

 

 
 

Figure 3.6 Sensitivity of Expected Value to Backorder Cost of Part 1 

 
 

Further sensitivity analysis demonstrated that those models with the 

lowest cost path for any scenario involved some degree of substitution, and the 

overall lowest cost models (with optimal parameter values) involved heavy 

substitution.  Table 3.7 shows the results of a number of these trials.  In no case 

was a lowest cost path found that involved no substitution, even when the 
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benefits of substitution were reduced by low reliability of Part 2 on machine type 

1 or a lowered backorder penalty. 

 
Table 3.7 Expected Value of Various Scenarios 
 

 
 

 
Summary of Decision Tree Model 

Overall, the model worked well and produced interesting results that beg 

further study.  The following sections will utilize a Markov Chain and a Poisson 

process in order to increase the time horizon so that longer term effects of 

substitution, and varying effectiveness of the substitute, can be analyzed.  From 

this section, we can see that even utilizing a limited model demonstrates that 

substitution can have important results for expected value. 

What we have accomplished in this section is to demonstrate an approach 

to move the study of substitution for service parts beyond a myopic model into 

multi-period analysis.  We also see the limitations of the myopic model 

manifested as the cascade effect of current time period decisions upon future 

time period choices.  In addition, we have created the approach we will model 

with the Markov chain to allow the consideration of probabilistic substitution and 

dissimilar reliability. 
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CHAPTER 4 
 

UNIDIRECTIONAL SUBSTITUTION USING MARKOV CHAINS 
 

 
Introduction  

In this section we look at a variation of the normal inventory management 

policy where unidirectional substitution is employed as a policy in order to 

improve the customer service to cost relationship.  In today’s increasingly global 

economy, firms find themselves with significant customer installations far from 

the manufacturing center and primary warehouse bases. For example, a 

manufacturer may have its production and distribution centers in the United 

States but might have an important customer located in Sicily.   The company 

may have no other customers in Sicily, but making sure that this customer is 

serviced properly is an important concern, because this customer is an important 

component of the firm’s business.   As a result, it is important to make sure that 

parts needed to service this customer’s machinery are available in Sicily in order 

to minimize downtime. 

During our research we examine policy optimization for managing service 

parts in satellite or remote warehouses; particularly with respect to those 

scenarios where inventory costs are high, and inventories must be kept small, 

which together present a number of challenges that defy conventional optimal 

inventory modeling.  One of the primary assumptions for the service part policy
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we are examining is that customers are highly intolerant of unscheduled 

downtime.  When a component failure occurs it is critical to bring the system 

back on line immediately.  This means that the demand lead time for service 

parts is often very short.  A number of scenarios meet this condition including: 

parts critical to a manufacturing process, parts used in life safety systems, and 

parts required to maintain regulatory requirements. 

An important differentiation for service part policy vs. standard production 

and inventory policy is the fact that the demand is often unpredictable and can be 

very low for a given part.  In addition demand for service parts may deteriorate 

over time, or the target machine may no longer be in use, and these factors can 

result in an extreme risk of obsolescence.  As a result, it is generally desirable to 

limit the amount of parts in storage or the size of production runs.  In addition, 

given a low and unpredictable demand rate, it is not always feasible to interrupt 

normal production in order to make a small product run on very short demand 

lead time.  Finally, as many of these service facilities are located great distances 

from the factory, the shipping times and customs clearance times are not 

insignificant and introduce a great deal of variability into supply lead times.  The 

end result of these factors is that service part inventories are often small, and it is 

not safe to assume that we can rely upon the factory or suppliers to immediately 

produce a replacement component. 

The traits we have mentioned create a scenario where substitution of one 

component for another component is very attractive.  The use of substitution can 
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reduce production quantities and lead times while increasing service fill rates.  

This utilization of unidirectional substitution is the focus of our research.  

 
Nomenclature of Markov Chain Unidirectional Substitution 

State Variables 

i<� = Inventory of Part 1 at state j 

i<� = Inventory of Part 2 at state j 

i<�� = Number of substitutes at state j 

vj
1 = Number of arrivals of Part 1 arriving 1 periods in the future at state j 

wj
1 = Number of arrivals of Part 2 arriving 1 periods in the future at state j 

vj
2 = Number of arrivals of Part 1 arriving 2 periods in the future at state j 

wj
2 = Number of arrivals of Part 2 arriving 2 periods in the future at state j 

Parameters 

p��  = Probability that a Part 1 installed in machine type 1 will fail during period t 

p��  = Probability that a Part 2 installed in machine type 2 will fail during period t 

p���  = Probability that a Part 2 installed in machine type 1 will fail during period t 

n� = Number of machines using Part 1 as a primary part 

n� = Number of machines using Part 2 as a primary part 

θ = Lead time for new part arrival (assumed to be equal for Part 1 and Part 2) 

Decision Variables 

s� = Target for Part 1 stock 

s� = Target for Part 2 stock 
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P> = Probability that a substitution will occur 

Algorithmic Variables 

I��  = Inventory level of Part 1 at the beginning of period t 

I��  = Inventory level of Part 2 at the beginning of period t 

δt = Number of machine type 1 running with Part 2 as a substitute at the 

beginning of period t 

I?@A��   = Maximum number of Part 1 at the beginning of period t 

I?@A�   = Maximum number of Part 2 at the beginning of period t 

δmax= Maximum number of machine type 1 running with Part 2 as a substitute  

T = number of time periods 

m�� = Number of failures of Part 1 on machine type 1 during period t 

m�� = Number of failures of Part 2 on machine type 2 during period t 

m��� = Number of failures of Part 2 on machine type 1 during period t 

m<� ?@A = Maximum number of failures of Part 1 on machine type 1 from state set j 

m<� ?@A = Maximum number of failures of Part 2 on machine type 2 from state set j 

m<��?@A = Maximum number of failures of Part 2 on machine type 1 from state set 

j 

C< = The set of all valid and unique state sets 

C = The set of all valid and unique state sets 

J = Number of unique states 

n<��?@A = Maximum number of substitutions possible from state set j 

n��� = Actual number of substitutions per cycle 
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q� = Number of binomial trials Part 1 on machine type 1 

q� = Number of binomial trials Part 2 on machine type 2 

q�� = Number of binomial trials Part 2 on machine type 1 

F��  = Number of failures of Part 1 on machine type 1 during time period t 

F��  = Number of failures of Part 2 on machine type 2 during time period t 

F���  = Number of failures of Part 2 on machine type 1 during time period t 

A = Transition probability matrix 

Steady State Values 

π< = Steady state probability of state j 

I>>� = Steady state inventory of Part 1 

I>>� = Steady state inventory of Part 2 

∆>>= Steady state level of substitution 

v>> = Steady state purchases of Part 1 

w>> = Steady state purchases of Part 2 

F>>� : = Steady state fill rate of Part 1 

F>>�  = Steady state fill rate of Part 2 

F>>G  = Steady state total fill rate  

B>>�  = Steady state backorder rate of Part 1 

B>>�  = Steady state backorder rate of Part 2 

 
Establishing the Existence of the Markov Property and Ergodicity 

In this work we consider the unidirectional (one-way) substitution problem 

for a case in which there are two machine types.  Each machine type uses a 
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particular part similar enough to other machine type’s part that the part used on 

machine type 2 (Part 2) can be used as a substitute for the primary part on 

machine type 1 (Part 1) if necessary.  However, the parts are not perfect 

substitutes because the standard part on machine type1 cannot be used as a 

substitute on machine type 2.  In addition, when Part 2 is substituted for Part 1, 

the expected lifetime of Part 2 on machine type 1 may be different from the 

expected lifetime of Part 1 on machine type 1 and may also be different than the 

expected lifetime of Part 2 on machine type 2. 

In order to utilize a Markov Chain first we must ensure that we develop the 

model in such a way that we maintain the Markov Property.  We do this through 

careful state design and transformation rule definition. 

The Markov Property requires that the conditional probability of 

subsequent states of the process, given the present state, depends only upon 

the present state and not past states; i.e. it is conditionally independent of these 

past states.  Formally, Pr(Xn|xt=1, xt=2, xt=3… xt=n) = Pr(Xn|xn).  Often, in order to 

ensure that the Markov Property is retained, researchers model the problem 

assuming a probability density function for which the no memory property is a 

characteristic feature.  Examples of this sort of distribution include exponential 

distributions and Poisson arrivals.  However, we wish to consider a case in which 

there is no guarantee that arrivals are exponential, or that Poisson arrivals exist, 

and the sample size is not large enough to assume a Poisson approximation. 

Our approach to ensuring that we retain the Markov Property is very 

straightforward.  We carefully design each state variable set such that sufficient 
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information is included in that state set to determine any subsequent state.  In 

addition, we ensure that the method used to transition from the present state set 

to the next state set incorporates only the information in the present state set.  

Our objective is to predict steady state values for inventory levels, fill 

rates, ordering rates, and backorder rates, for given set point and substitution 

policies.  As such, in addition to retaining the Markov Property, the model must 

yield a transition probability matrix that is ergodic.   

First, we set forth the sequence of operations and method of accounting 

that is used in this model, as these assumptions underpin the Markovian 

assumptions upon which this model relies.  The following sequence of events is 

assumed to occur: 

1. Each morning inventory arrives prior to the service person’s audit of the 

system. 

2. The service person notes any failures from the prior period and makes 

replacements in the following sequence: 

i. Failures on machine type 1 of either Part 1 or Part 2 are repaired 

with Part 1 until Part 1 stock is depleted.  

ii. Failures on machine type 2 are repaired with Part 2 stock until Part 

2 stock is depleted.  

iii. Failures on machine type 1 of either Part 1 or Part 2 are repaired 

with Part 2, if adequate Part 2 is available, with some probability of 

substitution set by policy.  The probability of substitution is applied 

to each potential instance of substitution. 
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3. An inventory of Part 1 and Part 2 is taken and parts of each type are 

ordered so that any down machine can be repaired with the primary part for that 

machine class and so that inventory levels for each part will reach the target 

stock level after such repairs are made. 

4. The state of the inventory and outstanding orders is logged and this 

logged value is the new state value for this time period. 

5. Once a substitution has been performed the part remains in place until it 

fails. 

In the case of the one-way substitution problem we are interested in 

knowing the inventory of each part and the number of machines currently running 

with a substitute, so each of these values is captured with a state set member.  In 

order to predict future states, using only information captured in the current state 

set, we must also have variables that indicate the arrival of new parts. These 

variables, in conjunction with the value of current inventory and substitution 

levels, will yield the probability of transitioning to a new state when combined with 

the probability of failure and the probability of substitution.  As a result, the state 

variable set will include state set members necessary to capture the arrival of 

spare parts.  The collection of all necessary state set members required to 

uniquely identify a possible state comprise a state variable.  The collection of all 

state variable sets describes the universe of possible states, which we refer to as 

U. 

A state set model that incorporates all necessary information for this 

unidirectional substitution problem is of the form {I��, I��, δt ,v1,w1…vθ,wθ}. We refer 
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to each member variable of the set as a state variable member and refer to the 

entire set of such variables as a state variable set.  Collectively, the universe of 

state variable sets describes every possible grouping of inventory, equipment 

operational status, and outstanding orders. After assembling an array of all 

unique possible state variable sets, we can utilize a Markov Chain to calculate a 

steady state transition matrix and steady state values for a wide variety of 

measures of goodness.  With this state set definition, and the rules for action 

described above, we ensure that the Markov Property is retained.  We maintain 

the integrity of this assumption by deriving all state sets from one seed of this 

class using transformation rules based upon the aforementioned operations. 

 
Proof of Accessibility and Irreducibility 

For some arbitrary but fixed states f, g ∈ E; by definition, g is accessible 

from f if and only if pf,g
n > 0 for some n ≥ 0.  Let tg = the number of steps until the 

Markov Chain Xn reaches state g ∈ E.  Further define tg = ∞ if Xn ≠ g for all n ≥ 0.  

Then g is accessible from g ∈ E iff P(t < ∞|X0 = f) > 0. 

The property of accessibility is transitive, so that if f ïh and hïg then 

fïg. Further,  if fïg and gïf, then the states communicate (fñg).  If the only 

equivalence class in the Markov Chain is fñg for all f, g ∈ E then we say that the 

chain is irreducible. 

For all states f in our Markov Chain such that I��  < s1 or I��  < s2, it is 

required under the rules to reorder to I��=s1 and I��=s2.  In addition, since 0<p1<1 

and 0<p2<1, it is possible to order inventory such that we re-attain the state I��=s1 



www.manaraa.com

47 

and i��=s1 from any state where I��<s1 or I��<s2.  In addition, since p1<1 and p2<1, 

it is possible that no failures of Part 1 or Part 2 occur and hence we would reach 

a state where I��=s1, I��=s2, and v�1=I�1=v��=I��=v�J=I�J=0.  Moreover, since it is 

possible that k=0, and since p21 >0, it is possible that if I���>0 that m+K��1 =I���.  That 

is, it is possible that for some period of time ≥ lead time that m+K�1 =m+K�1 =0 and 

m+K��1 =I���.  In this event we can always return to the state {s1,s2,0,0,0…0,0} from 

any state inferior to that state. 

Furthermore, for any state where I��>s1 it is possible to have m+K�1 =(i��-s1) 

while m+K�� =0 and m+K��1 =I��.  As such it is possible to return to {s1,s2,0,0,0…0,0} 

from any state superior to that state. 

Given the foregoing, it can be seen that {s1,s2,0,0,0…0,0} is accessible 

from every state.  Since the Markov model states are determined by finding all of 

the unique destinations reachable by applying the failure rules to 

{s1,s2,0,0,0…0,0}, it is obvious that all states are accessible from 

{s1,s2,0,0,0…0,0}.  Because of the foregoing, it is clear that all states are 

communicative and hence the Markov Chain is irreducible.  Moreover, it is 

obvious that there are no absorbing states. 

 
Proof of Aperiodicity 

The following rules or variants thereof, are reported heavily in the literature; 

see for example (Tjims, 2003). 

Define: State i of a Markov Chain has a period = dp ≥1 iff dp = greatest 

integer such that P(n)pp = 0 if n is not a multiple of dp.   
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Given: 

1. If P(n)pp = 0 for all n then dp is defined to be ∞. 

2. dp is defined to be 1 if dp is not 0 and is not >1. 

3. State p is defined to be aperiodic if dp=1. 

4. A Markov Chain is said to be aperiodic if all states are aperiodic. 

5. For an irreducible Markov Chain, if one state is aperiodic all states 

are aperiodic. 

From (5), it is sufficient to demonstrate that one state is aperiodic in order 

to demonstrate that the entire Markov Chain is aperiodic.   

We define the fully saturated state to be that state in which all inventory is 

at the set point and for which there are no outstanding orders and there are no 

substitutes running and label this as state p.  We further define the state q in 

which all inventory for Part 2 is saturated and no outstanding orders for Part 2 

exist and no substitutes are on line but I��=s1-1 and v�� = 1.  Then there is some 

non-zero probability of moving from state p to state q = Pr (Failures of Part 1 = 1) 

Pr (Failures of Part 2=0).  In addition, there is a non-zero probability of moving 

from state q to state p = Pr (Arrivals of Part 1 - Failures of Part 1 =1) Pr( Failures 

of Part 2=0).  This fact shows that Pr(d(n)pp≠0 and hence dp ≠ ∞.  

Next, define state r as any state that is the immediate state occupied prior 

to a return to state p.  For any period greater than 1 there is a positive value 

probability that (I�L-I�M) ≠ (Arrivals of Part 1 - Failures of Part 1).  Given this, it 

cannot be stated with certainty that any n which required a transit from r to p 

would occur in the next cycle.  As such no value of n >1 has a probability of 
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occurrence of 1 on any cycle, or any multiple cycle period, let alone on all cycles.  

Therefore, there is no n > 1. 

In this case, for state dp we have n ≠ 0, n≠∞, n ≤ 1∀ ℤ.  Hence the state dp 

is aperiodic and in conjunction with the fact that the Markov Chain is irreducible 

we know that all states are therefore aperiodic. 

Since the Markov Chain is aperiodic, irreducible, and accessible we can 

state that it is strongly ergodic and as such the transition probability matrix will in 

all cases ultimately yield unique steady state values regardless of the initial state 

vector values. 

 
The Markov Chain Unidirectional Model  

 
Defining the State Sets 

We develop the state set universe by beginning with a seed state set that 

is known to exist in all cases.  This seed state set is comprised of that state in 

which both inventories are filled to the inventory target level and all machines are 

operational with their primary part.  There are no outstanding orders and the 

substitution level is, of course, zero.  This state set is represented as {s1,s2,0,0,0} 

in the single day lead scenario and as {s1,s2,0,0,0,0,0} in the two-day lead 

scenario. 

From the seed state, subsequent states are generated by determining 

each possible state set that can result from using the transformation rules shown 

in equations 4.1 through 4.6.  We first define functions in equations 4.1 through 
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4.3 that describe the maximum number of failures for each part class and also 

define the maximum level of substitution. 

 

  m<� ?@A    = n� − i<�� + MinP0, i<�Q  (4.1) 

  m<� ?@A    =  n� + MinP0, i<�Q   (4.2) 

 m<�� ?@A   =  i<��  (4.3) 

   n<�� ?@A   =   
RST
SU   0  if  i<� + v<� − m� − m�� ≥ 00  if  i<� + w<� − m� − m�� ≤ 0                                  w<� − p> = 0MinP� i<� + w<� − m��, m� + m��− i<� − v<�Q if otherwise

X  
(4.4) 

 
 
 

If the lead-time for parts delivery is one-day, the seed generates the 

following branches: 

 C<K�   = Y Y Y Y PZ�i<� − m� − m�� + n���[\]^_`a�
[]^bc

�?\]^_`a�
?]^bc

�?\] _`a�
?]bc

�?\̂  _`a�
?^bc+ v<��, �i<� − m� − n�� + w<��, �i<�� − m�� + n���, �s� − i<�+ m� + m�� − n�� − v<��, �s� − i<� + m� + n���dQ 

(4.5) 

 
If the lead-time for parts delivery is two days, the seed generates the 

following branches: 
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    C<K�   = Y Y Y Y PZ�i<� − m� − m�� + n���[\]^_`a�
[]^bc

�?\]^_`a�
?]^bc

�?\] _`a�
?]bc

�?\̂  _`a�
?^bc+ v<��, �i<� − m� − n�� + w<��, �i<�� − m��+ n���, �v<��, �w<��, �MaxZs� − i<� + m� + m�� − n��− v<�, 0d�, �s� − i<� + m� + n�� − w<��dQ 

(4.6) 

 
For: 

∀ f                   Zi<�gi<�is integer on the range is� − n�, s�jd kll  θ = 1 Zi<�gi<�is integer on the range P– n�, s� + Minis�, n�jQd kl  θ > 1  X 
∀ f                  Zi<�gi<�is integer on the range is� − n�, s�jd kll  θ = 1           Zi<�gi<�is integer on the range i– n�, s�jd kl  θ > 1  X 
∀ f              Zi<��gi<��is integer on the range in� − s�, n�jd kll  θ = 1                Zi<��gi<��is integer on the range i0, n�jd kl  θ > 1  X 

We repeat the foregoing transformations upon the state sets yielded by 

the previous operation, and we admit to the set of state sets U only those 

branches that are not already a member of the universe of state sets.  We repeat 

this process until the branches seed no further unique results.  

At this point we have the superset U comprised of J state sets.  Each 

state set is itself a set comprised of variables which describe the state of one 

component of the system.  The information in each state set belonging to U 

comprises enough information from which to determine the next state set without 

regard to any information from the past.  Since each state in U was generated 

using only a single prior state exposed to random failure, and substitution 

possibilities that bear no consideration of past occurrences, along with arrivals 

known in the set, it is clear that the Markov Property is retained. 
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For a given state variable, transition from the present value to a future 

value is determined by the binomial probability of the confluence of events 

required for that transition within the frame work of rules and assumptions for the 

model.  Similarly, transition from one state set to the next is the cumulative 

probability of the individual probabilities of transition for each component state 

variable and the probability of substitution. 

Once the super set of state variable sets has been created we next create 

the transition probability matrix.  Each row in the matrix represents the origination 

state, and each column represents the destination state.  For the superset of 

state sets U of length J, the matrix will consist of J rows by J columns with each 

row and column running from U1 through UJ.  In our algorithm we begin with the 

row representing U1 and systematically apply the transformation rules used to 

develop the state sets in conjunction with the probability of substitution. The 

probability of any given transition from a given state set to any other state set is 

as set forth in equation 4.7. 

 n o o o p �i<� − i<Kq�  = mr� + ms�� − nt�� − v<� �[\]^ _`a

ubc
?\]^ _`a

vbc
?\̂  _`a

wbc x ×  
n o o o p �i<� − i<Kq�  = mz� + ms�� + nt�� − w<� �[\]^ _`a

ubc
?\]^ _`a

vbc
?\] _`a

{bc x × 
          n o o p �i<�� − i<Kq��  = ms�� − nt�� �[\]^ _`a

ubc
?\]^ _`a

vbc x × 
                                                 
p>�  

(4.7) 
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After calculating the transition probabilities we next proceed to calculate 

the steady state transition probability vector by solving the system of equations 

 π = πA (4.8) 

        1 = o πr
~

rb�  
(4.9) 

In essence, our task is to solve for the eigenvector π whose eigenvalue is 

one.  In our algorithm we accomplish this by taking the transpose of the transition 

probability matrix then replacing the Jth row with 1’s and dotting the resulting 

matrix  by a vector of {π1…πJ}.  We label the resultant matrix Amodified.  We next 

replace the Jth element in the vector with 1 and label the resultant vector πmodified.  

Then it is only necessary to solve the system of equations such that: 

                       ∑ �w,v?������� = πw?������� ∀ {�|1 ≤ � ≤ J�~vb�  (4.10) 

 
Characterizing the Steady State Values 

All equations characterizing the steady state values (which are our 

measures of goodness) are calculated using the following formulas where j ∈  [0, 

J] and J = number of unique state variable sets. 

The steady state values for inventory 1, inventory 2, and average 

substitution level, are very straightforward.  We simply multiply the value for that 

variable in each state variable set by the probability of being in that state variable 

set and sum the results.  That is, we use the weighted average of the state 



www.manaraa.com

54 

variable sets where the weighting factors are the steady state probabilities as is 

shown in equations 4.11 through 4.13. 

  I>>� = o π<i<�
~

<b�  
 

(4.11) 

 I>>� = o π<i<�
~

<b�  (4.12) 

 
∆>>  = o π<i<��~

<b�  (4.13) 

 
Calculation of the steady state order rate for each part is also 

straightforward; however a small explanation is required.  Since all part orders for 

Part 1 will ultimately manifest as v<� , and all orders for Part 2 will ultimately 

manifest as w<�, the steady state order rate is the weighted value for v<� and w<� 

with the weighting factor again being the steady state probability of each state 

set.  Equation 4.14 shows this for Part 1 and equation 4.15 does so for Part 2.  

 v>>  = o π<v<�
~

<b�  (4.14) 

 w>>  = o π<w<�
~

<b�  (4.15) 

 
We calculate the fill rate using the percentage of demand we meet 

completely as that demand occurs.  Since each day there is a demand for parts, 

we consider that we fail to meet demand that day if we do not satisfy that 

demand in its entirety.  Fill rate then is defined in this case as that percentage of 
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days that we meet demand in its entirety.  Since a negative inventory indicates 

an idle machine, the implementation of this definition for Part 1 and Part 2 is the 

summation of the steady state probability of each state set in which the inventory 

of the respective part is not less than zero.   

 F>>�   = o π<  ∀ Zjgi<� ≥ 0d~
<b�  (4.16) 

 F>>�   = o π<  ∀ Zjgi<� ≥ 0d~
<b�  (4.17) 

Total fill rate is similar to the fill rate for an individual part in that total fill 

rate is defined to be that percentage of days in which we meet all demand.  

However, in the case of total fill rate, this definition is extended to include the 

percentage of days in which we do not fail to meet demand for any part.  As 

such, we calculate total fill rate as the summation of the steady state probability 

of each state set in which the inventory of both parts is not less than zero.   

                     F>>�� = o π<  ∀ Zjgi<� ≥ 0 ∩ i<� ≥ 0d~
<b�  (4.18) 

Backorder rate is defined as the weighted average shortage for a 

particular part.  Again, the weighting factor is steady state probability.  The 

calculation of backorder rate for each part type is calculated by summing the 

product of inventory shortage in a state set with negative inventory times the 

steady state probability of the respective state set. 
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 B>>�  = o π<gi<�g  ∀ Zjgi<� < 0d~
<b�  (4.19) 

 B>>�  = o π<gi<�g  ∀ Zjgi<� < 0d~
<b�  (4.20) 

With these measures of goodness in hand we now proceed to evaluate 

the sensitivity of the measures of goodness to changes in our decision variables, 

under varying reliability parameters, in order to examine the benefits of an array 

of substitution vs. stocking policies. 

 
Algorithm and Model Implementation 

The algorithm used to calculate the steady state values for the variables of 

interest was implemented in Wolfram Mathematica 7.0.  The reason we chose 

Mathematica was that this program allowed us to employ high level programming 

while utilizing sophisticated pre-built functions for matrix manipulation.  Also, 

Mathematica has no artificial limitations on the size of the matrices it can handle; 

with the only limitations on size coming from the physical parameters of the 

computer and operating system.  This feature is critical to successfully solving 

the Markov Chain since we must handle matrices having up to 48,301 rows by 

48,301 columns (2,332,986,601 cells).  

In our models we use 10 machine type 1 and 10 machine type 2 for both 

the one-day lead and for the two-day lead problems.  We consider s1 and s2 over 

the set {1,2,3,4,5} for the one-day lead model and s1 and s2 over the set {1,2,3,4} 

for the two-day lead model.  In each case we vary the reliability of the substitute 
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on machine type 1 through the range {0, 0.05, 0.1, 0.15, 0.2, and 0.25}.  We vary 

the reliability of Part 2 on machine type 2 through the same range.  In addition to 

the foregoing, we vary the probability of substitution through the range {0, 0.25, 

0.5, 0.5, 0.75, and 1.0}. 

We begin the code by defining the domain of critical variables.  The 

variables for probability of substitution and inventory set point are ranged 

variables that are systematically altered by the algorithm in order to determine 

the results under a broad array of policies.  These include: s1, s2, and probability 

of substitution. 

In the primary algorithm we use a seed set that represents the state where 

both primary part inventories are at the target stock level.  This state has a value 

of zero for number of substitutes, and zeros at all values for outstanding orders.  

With this seed state ({2, 2, 0, 0, 0} for one-day lead and  {2, 2, 0, 0, 0 ,0 ,0} for 

two-day lead) we then proceed to generate possible new states as branches, as 

set forth in equations 4.5 and 4.6, using loops over the range of allowable values 

for each state variable set member.  We test each result to ensure it is unique; 

and if the state set is unique, admit it to U.  The actual coding of this task follows 

(basestates is the code tag for U): 
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Figure 4.1 Filling the State Sets 
 

 
Once the initial array “basestates” is populated (U) we proceed to 

construct a transition probability matrix as a sparse array where each row 

represents an element of U, and each column also represents an element of U.  

Initially each value in this array is set to zero. 

Next, we examine each entry in U and again apply either equation 4.5 or 

equation 4.6 using a number of nested loops.  This systematically calculates 

every possible state to which the state set of interest could transition. We then 

calculate the binomial probability of each transition using equation 4.7.  We add 

the probability for each instance to the appropriate destination column at the row 

of the member of U that we are evaluating.  The section of code that handles this 

important task is shown below (A is the transition probability matrix). 

For@flag = 1, flag ≤ Length@basestatesD, flag++,

For@m1 = 0, m1 ≤ n1 − basestates@@flag, 3DD + Min@0, basestates@@flag, 1DDD, m1++,

For @m2 = 0, m2 ≤ n2 + Min@0, basestates@@flag, 2DDD, m2++,

For@m21 = 0, m21 ≤ basestates@@flag, 3DD, m21++,

For@n21 = innerflag@basestates@@flag, 1DD, basestates@@flag, 2DD, basestates@@flag, 4DD, basestates@@flag, 6DD, m1, m2, m21D,
n21 ≤ maxn21@basestates@@flag, 1DD, basestates@@flag, 2DD, basestates@@flag, 4DD, basestates@@flag, 6DD, m1, m2, m21D, n21++,

i = basestates@@flag, 1DD+ basestates@@flag, 4DD− m1 − m21 + n21;

j = basestates@@flag, 2DD+ basestates@@flag, 6DD− m2 − n21;

k = basestates@@flag, 3DD− m21 + n21;

v1 = basestates@@flag, 5DD;
w1 = basestates@@flag, 7DD;
w2 = s2 − j − w1;

v2 = Max@0, s1 − i − v1D;
target = H i j k v1 v2 w1 w2 L;
duplicate = 0;

If@MemberQ@basestates, Part@target, 1DD� False, basestates = AppendTo@basestates, Part@target, 1DDD

D
D

D
D

D
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Figure 4.2 Filling Transition Probability Matrix 

 
 

At the conclusion of this operation for every member of U, we have 

completed the probability transition matrix.  A sample of the probability transition 

matrix is shown for a small case with 1 of each class of machine and target 

inventories of 1 for each part.  This matrix was generated using ps = 0.5.  Note 

the sparse nature of the array in Table 4.1.  Since the matrices for this problem 

grow exceedingly large, the ability to process matrices as sparse arrays is 

essential. 

  

For@row = 1, row ≤ numberofcells, row++,

oldi = basestates@@row, 1DD; oldj = basestates@@row, 2DD; oldk = basestates@@row, 3DD;
oldv1 = basestates@@row, 4DD; oldv2 = basestates@@row, 5DD; oldw1 = basestates@@row, 6DD; oldw2 = basestates@@row, 7DD;
q1 = n1 − oldk + Min@0, oldiD;
q2 = n2 + Min@0, oldjD;
q21 = oldk;

For@m1 = 0, m1 ≤ n1 − oldk + Min@0, oldiD, m1++,

PrM1 = binomial@m1, q1, p1D;
For @m2 = 0, m2 ≤ n2 + Min@0, oldjD, m2++,

PrM2 = binomial@m2, q2, p2D;
For@m21 = 0, m21 ≤ oldk, m21++,

PrM21 = binomial@m21, q21, p21D;
For@n21 = innerflag@oldi, oldj, oldv1, oldw1, m1, m2, m21D, n21 ≤ maxn21@oldi, oldj, oldv1, oldw1, m1, m2, m21D, n21++,

i = oldi + oldv1 − m1 − m21 + n21;

j = oldj + oldw1 − m2 − n21;

k = oldk − m21 + n21;

v1 = oldv2;

w1 = oldw2;

w2 = s2 − j − w1;

v2 = Max@0, s1 − i − v1D;
column = Part@Part@Position@basestates, 8i, j, k, v1, v2, w1, w2<D, 1D, 1D;
A@@row, columnDD = A@@row, columnDD+ PrM1∗PrM2∗PrM21∗ binomial@n21, maxn21@oldi, oldj, oldv1, oldw1, m1, m2, m21D, psD

D
D

D
D

D



www.manaraa.com

60 

Table 4.1 Transition Probability Matrix for a Small Instance of the Problem 

 

 
Having generated the transition probability matrix, the next task is to solve 

for the solution to the systems of equations set forth in equations 4.8 and 4.9 

(equivalent to solving equation 4.10).  The set of equations for our exhibition 

problem follows: 

 

 

Figure 4.3 The Solution Set of Equations 

 
Next, with the solution vector π, all measures of goodness are calculated 

by executing the equations 4.11 through 4.20. 

We iterate upon the foregoing procedure through all values of s1, s2, 

p���, p��and ps under consideration.  In the case of our problem we examine target 
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stock levels ranging one through five for each part. We examine each 

combination of the following for the one lead day case and for the two-day lead 

case.  

{s�|s� ∈  {0,1,2,3,4,5�� 
{s�|s� ∈  {0,1,2,3,4,5�� 

{p���|p��� ∈  {0, .25, .5, .75,1�� 
Zp��gp�� ∈  {0, .25, .5, .75,1�d 
{p>|p> ∈  {0, .25, .5, .75,1�� 

 
Analysis of Data from Unidirectional Model 

Since we have three decision variables, and a great many measures of 

goodness (including both inventory levels, order rates for both parts, fill rates for 

both parts, and backorder rates for both parts), there are a very large number of 

scenarios we could review from the results of our mathematical modeling.  These 

results are further expanded since we allowed the failure rate of both the Part 2 

as a substitute part and Part 2 as a primary part to vary.  In order to make our 

data analysis manageable, we take a systematic approach that examines various 

potential scenarios with respect to the importance of the measures of goodness, 

and limit our analysis to those measures of goodness appropriate to that 

scenario.  

First, it is important to note one aspect of our modeling. Since we allow the 

reliability of the substitute to differ from the reliability of the primary part on 

machine type 1, and since we substitute with a stochastic approach, conventional 
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inventory modeling approaches that determine optimum order levels and stock 

levels break down.  In particular, the technique of removing variable costs from 

the inventory model, while optimizing with respect to holding cost, backorder 

cost, and fill rate requirements, is not valid because variable costs do not cancel 

in this model.  Moreover, the fact that we are considering service parts makes 

conventional inventory modeling unreliable for the reasons pointed out in the 

introduction. 

The fact that variable costs cannot be dropped from the optimization 

modeling has a profound effect upon any policy decision since these costs are 

very significant when contrasted against holding and backorder costs.  In fact, 

holding and backorder costs are often modeled as a few percentage points of 

variable cost.  As such, small changes in order rate can dominate backorder or 

holding cost effects.  In addition, there is a further complication in this model; 

since we are dealing with service parts, the inventory costs might be much more 

significant than normal and the backorder costs could be extreme.    

 
Targeted Order Rate Policies 

In the first case we explore a scenario where the primary measure of 

goodness targeted is the rate of ordering.  This scenario is very important in that 

the cost of parts can significantly outweigh the cost of holding inventory in many 

scenarios. As such, it makes sense to examine the model’s response to decision 

variable choice as the rate of ordering is held within a target range.  As we do 

this sensitivity analysis, we also examine the effects of varying reliability of Part 2 
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both with respect to its reliability on machine type two and with respect to its 

reliability as a substitute on machine type 1.  

We began with an examination of the model in which lead times are 

assumed to be one day. We look at two target order ranges for Part 2: {0.97 - 

0.98} and {1.1 - 1.45}. 

This scenario reveals that in order to maintain orders in the lowest level 

range under consideration; we should keep the s2 at a quantity of one while 

keeping the s1 at either two or three.  The best total fill rate for any given 

reliability of p21 in this range occurs at a ps of 0.75.  However, it is worth noting 

that the inventory levels of Part 1 are significantly lower when s1 is held at two 

and ps is 0.5 or 0.25. 

Low order rates for Part 2 can be maintained with higher substitution rates 

under these conditions, but at the cost of higher inventory for Part 1 (inventory 

increased to 2.01 for Part 1 vs. 1.09 for Part 1 as ps increased from 0.5 to 0.75).  

All other measures of goodness are essentially equal, with the exception of the 

backorder rate of Part 1, which decreases from 0.07 to 0.01 as inventory and 

substitution rates rises. 

When the target ordering level for Part 2 is set to the higher range {1.1 - 

1.45} the situation is more complex.  In this range we allow increased ordering of 

Part 2, and increased inventory of Part 2. In exchange, we achieve our ordering 

goals while maintaining minimum inventory of Part 1.  We should note that, as 

the order rate for Part 2 rises, there is a corresponding decrease in orders for 

Part 1. That is, we are trading off between orders of Part 1 with orders of Part 2 
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and optimization will require consideration of the relative cost of the two parts.  If 

Part 1 is significantly cheaper than Part 2, a strategy that minimized Part 2 orders 

would be sensible. If the inverse is true then the strategy should be reversed. 

This case shows clear evidence of the benefits of substitution.  If we 

consider that the trade off of orders for Part 1 vs. Part 2 is factored into policy 

making based upon the respective cost of the parts, and that as a result the 

appropriate order target range has been selected, then we would consider all 

other parameters for differentiation.  In all cases of exactly equivalent set points 

we can observe that when the substitution rate climbs from 0.5 to 0.75 and 

subsequently to 1, inventory for Part 1 and Part 2 decreases, fill rate for Part 1 

and total fill rate increase (while fill rate for Part 2 remains unchanged) and the 

backorder rate for Part 1 decreases (while backorder rate for Part 2 remains 

static).  In these cases the tradeoff is a decrease in Part 1 purchases as 

substitution rises and an increase in Part 2 purchases.  Thus, in a scenario 

where Part 2 is similar in price to Part 1 it makes sense to substitute.  If Part 2 is 

more expensive than Part 1 then a closer analysis of the tradeoffs would be 

required before setting policy.   

For all levels of P21 the increase in probability of substitution leads to 

reduced backorder rates for Part 1 and increased fill rates for Part 1.  Inventory 

levels for Part 1 also decrease with increasing probability of substitution.  The 

penalty for increased substitution is always an increased order rate for Part 2.  

This is counterbalanced by a corresponding decrease in orders for Part 1.  The 
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same notes regarding policy decisions mentioned above for the case apply at all 

rates of P21. 

If we organize the data in such a fashion that we hold the order rate for 

Part 1 within a tight range instead of holding the order rate for Part 2, we find the 

results follow the same pattern with respect to sensitivity to P21, s1,s2, and ps.  

The main difference in this scenario is that the responsiveness of the dependent 

variables is less pronounced than in the case of manipulating the independent 

variables with the order frequency of Part 2 held within a tight range. 

As an illustration, consider the case of holding orders of Part 2 to the 

range {1.1 -1.45} while holding s1 at 1.  We allow p21 and s2 to vary and compare 

backorder rates for the volatile backorder of Part 1 against these variables as 

substitution levels change.  It is clear that increased levels of substitution 

decrease backorder of Part 1 at all levels of p21 and for all levels of s2
 as can be 

seen in Figure 4.4.  
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Figure 4.4 Part 1 Backorder Rate as a Function of Part 2 Inventory Set-point 
and Substitute Reliability For Three Levels of Substitution for 
Targeted Service Level Policy 

 

 
When we examine the case where p21 varies and we try to achieve 

targeted ordering levels for Part 1 or Part 2, but increase the lead time for 
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delivery to two days, we see the same relative relationship between probability of 

substitution vs. inventory, probability of substitution vs. fill rate, and ps vs. order 

level, for the non-controlled part that we saw in the one-day case.  However, in 

the two-day lead model there is an amplified sensitivity of backorder rate as the 

probability of substitution changes.  As ps rises, the backorder rate for Part 1 at a 

given set of values for s1 and s2 drops rapidly while the backorder rate for Part 2 

rises slightly.  Given this, there may be more incentive for considering the 

benefits of substitution as lead time increases if Part 1 Backorder is not 

significantly less expensive than Part 2 backorder.  Again, this must be weighed 

against the significantly increased order rate for Part 2. 

As a demonstration of the magnification in the amplitude of sensitivity just 

discussed see the Figure 4.2 where we constrain ordering in a two-day scenario 

for Part 1 in the range {0.5 - .75} against s1 static at one unit as the reliability of 

Part 2 on machine 1 varies along with s2.  Figure 4.5 shows that successively 

higher probability of substitution leads to significant decrease in the backorder 

rate for Part 1.  Not surprisingly, higher s2 and lower p21 also reduce backorders 

at all substitution levels. 
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Figure 4.5 Plot of Part 1 Backorder Rate as a Function of Part 2 Inventory Set-
point and Reliability of the Substitute for Various Substitution 
Policies for Targeted Service Level Policy 

 

 
Again, we examine the two-day lead model with varying s2; however, we 

now look at the impact of the changing parameters on the backorder rate for Part 

2.  Worth noting in this case is the fact that the layers are inverted.  That is to 

say, higher substitution rates correlate with higher backorder rates for Part 2.  

This makes sense because some Part 2 diverted to helping maintain Part 1 

operation means that the safety factor at any given level of s2 is reduced.  There 

are two policy considerations that become apparent when comparing Figure 4.5 

(above) with Figure 4.6 (below).  First, the decrease in Part 1 backorder with 

increased substitution is larger than the harm to Part 2 Backorder rates.  All 

things being equal, if uptime across both machines is equally important, or if 

uptime on machine type 1 is more important than uptime on machine type 2, then 
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the message is substitution will result in greater customer satisfaction.  However, 

if machine type 2 is more critical, then we must be more careful and perform a 

cost-benefit analysis. 

 

 

Figure 4.6 Part 2 Backorder Rate as a Function of Inventory 2 Set-point and 
Substitute Reliability for Targeted Service Level Policy 

 

 
Targeted Backorder and Fill Rate Policies 

The next perspective we explore is where the priority is maintaining 

control of backorder and fill rate and optimizing upon other measures of 

goodness while maintaining targeted customer service levels.  There are many 

cases where fill rate and backorder rate would be specified at minimum or 

targeted levels.  One example is case of pollution control systems.  Often with 

these devices, permits require minimum performance with respect to annualized 

mass of emissions and hours of uptime per year.   

Failure to maintain operation of these devices to the levels specified in the 

permits endangers life and also can result in heavy fines or even plant closure.  

Typically, when the pollution control for a given process tool is non-operational 

the equipment discharging to that pollution device must be shut down.  Similarly, 
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in high-value-added operations, or in process bottlenecks, the end user has very 

little tolerance for downtime and excursions are not acceptable.  In these cases 

the equipment is frequently allotted maximum periods of unscheduled downtime, 

or down events, and as such backorder and fill rate targets would be common.  

Despite the foregoing, over specification can lead to extreme costs and as such it 

is not uncommon to choose an acceptable number for the upper range of the 

backorder and fill rate operating ranges. 

The first targeted backorder rate case we examine is a scenario where 

backorder of Part 1 is held at {0.1 to 0.2} for the single-day lead scenario.  In this 

example we fix the target stock of Part 1 at one unit and observe the response of 

the other measures of goodness as we vary P21 and s2 at various levels of 

substitution.  First we examine the effect on inventory of Part 2, as the inventory 

of Part 1 is relatively inelastic under these conditions.  In Figure 4.7 ps of 0.75 is 

red and ps of 0.5 is green. We can see that the increased level of substitution 

favors lower inventory for Part 2.  

 

 
 

Figure 4.7 Part 2 Inventory as a Function of Part 2 Target Stock and 
Substitute Reliability on Machine Type 1 for Targeted Service Level 
Policy 
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The decrease in inventory of Part 2 with increased substitution is 

counterbalanced by an increase in the order rate for both Part 1 and Part 2.  

Figure 4.8 illustrates this increase for orders of Part 1, while Figure 4.9 illustrates 

this response for Part 2 orders in the one-day lead model when backorder rate of 

Part 1 is held in the same tight range for the base case scenario (p2= 0.1, p21 = 

0.15).  In this case s1 is held static at 2 (since its backorder rate is the one being 

controlled) while ps and s2 varied. 

It is worth noting that there is an inflection point for both ordering 

scenarios, which hints at the possibility of optimizing the inventory rate vs. the 

probability of substitution.  Figure 4.8 shows two views to make this inflection 

point clear for the Part 1 order response, while Figure 4.9 shows the response of 

the Part 2 order level to the same changes.  There are local minima and maxima 

present for s2 of 3 and 4 with respect to substitution for orders of Part 1 and local 

maxima present for the same values with respect to orders for Part 2.  If those 

inventory targets are used then substitution policy should exploit the local minima 

for cost minimization (minima occur at ps = 0.5) while noting the local maxima for 

Part 2 ordering and staying away from it (for example at s2 = 4 there is a local 

maxima for ordering associated with ps = 0.75). 
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Figure 4.8 Two Views of Part 1 Order rate vs. Substitution Probability and Part 
2 Target Stock for Targeted Service Level Policy 

 

 

 

Figure 4.9 Part 2 Order rate vs. Substitution Probability and Part 2 Target 
Stock for Targeted Service Level Policy 
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We next explore the single day lead, base case scenario with p2=0.1 and 

p21 = 0.15. We examine the sensitivity of inventory to changes in decision 

variables.  We hold s2 constant at 2 and study the response of inventory to 

changes in target stock (s1) for Part 1 and changes in substitution policy. 

Figure 4.10 illustrates the effect on steady state inventory as s1 and the 

probability of substitution vary for the single day lead case in which backorder of 

Part 2 is held to the range {0.08 - 0.1} with s2 constant at 2.  Inventory of Part 2 

remains relatively stable because of the fixed s2, and at mid to high levels of s1, 

or if substitution policy dictates a low probability of substitution.  At high 

substitution rates, and for s1 below 2, there is rapid drop-off in inventory of Part 2 

that demonstrates sensitivity to both s1 and ps.  The reason for this is that the 

inventory of Part 1 is being held at critically low levels, and with high substitution 

probability, Part 2 is used to make up for lack of Part 1 inventory that results from 

the tight inventory strategy for Part 1.  Inventory of Part 1 is extremely sensitive 

to target stock level for Part 1 -- which is expected. 

 
 

Figure 4.10 Part Inventories as a Function of Substitution Probability and Part   
1 Target Stock - One-Day Lead for Targeted Service Level Policy 
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We modify the previous case to examine the effect that increasing lead 

time has on the sensitivity of the same parameters.  In the two-day lead case 

backorder rate is higher at all inventory and substitution levels; a byproduct of 

increased uncertainty that accompanies longer lead times.  As such, we choose 

our target backorder range to include {0.1 - 0.3}. The end result, demonstrated in 

Figure 4.11, is very similar to the one-day lead model 

 

.  

Figure 4.11 Part Inventories as a Function of Substitution Probability and Part 1 
Target Stock - Two-day Lead for Targeted Service Level Policy 

 

 
The experiment explores a direct comparison of the sensitivity of one 

backorder rate when the other part’s backorder rate is constrained to a fixed 

range.  In this case, we examine the single-day lead model with p2 at 0.1 and 

consider the impact of changes in reliability of the substitute, changes in 

substitution rate, and changes in target stock level, for the independent 
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backorder rate (in this case that of Part 1).  Figure 4.12 compares the backorder 

rate for Part 1 when backorder level for Part 2 is held in the tight range of {0.08 – 

0.1} with s2 constant at 2.  Not surprisingly, backorder for Part 1 climbs rapidly 

with the decrease in s1.  Also of interest is the relationship of backorder rate for 

Part 1 to p21; at high substitution probabilities, and high inventory targets for Part 

1, the backorder rate is not sensitive to changes in p21.  However, as substitution 

probability increases, and s1 drops, the backorder rate of Part 1 becomes slightly 

sensitive to the reliability of the substituted part.   

   There is an obvious impact on backorder rate as the probability of 

substitution increases; higher substitution always correlates with lower Part 1 

backorder levels – this confirms the primary motivation of substitution – that is, 

reducing backorder levels of Part 1.   

 

 

Figure 4.12 Backorder rate of Part 1 vs. Target Stock Part 1 and Substitute 
Reliability at Under Various Substitution Rates – One-Day Lead for 
Targeted Service Level Policy 
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Again, we examine the sensitivity of the inventory of Part 1 to changes in 

our decision variables; however, we add the dimension of longer lead and see 

how that alters the response by examining the two-day lead scenario as is 

illustrated in Figure 4.13.  We consider the two-day lead case where s2 is held at 

3 and backorder of Part 2 is held in the {.1 - .3} range.  We see a similar result in 

the two-day scenario as in the one-day scenario; but both the benefits of 

substitution, and the effects of the reliability of the substitute, have a more 

marked impact than in the case of the one-day model.  This further demonstrates 

the fact that substitution is a more important influence as the uncertainty – in this 

case in the form of increased lead time – grows. 

 

 

Figure 4.13 Backorder rate of Part 1 vs. Target Stock Part 1 and Substitute 
Reliability at Under Various Substitution Rates – Two-day Lead for 
Targeted Service Level Policy 

  

 
In the next case we examine a slightly different perspective on customer 

satisfaction and look at a constrained fill rate policy.  Backorder and fill rate are 

similar measures of goodness in that policies focused on either strive to maintain 
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uptime and customer satisfaction.  In addition, in many instances, backorder and 

fill rate measures of goodness move together with respect to manipulation of the 

decision variables and changes in parameters.  There are important differences 

however.  Backorder can be viewed as a measure of the intensity of badness.   

That is, high backorder rates correlate with multiple down systems, and extended 

downtime, while fill rate can be viewed as a measure of the frequency of 

badness.  We can experience high backorder rates if we have a relatively small 

frequency of occasions in which a large number of machines go down each time 

there are failures.  This could equate with a high fill rate if the frequency of these 

events is low.  Conversely, we could have a poor fill rate with a reasonable 

backorder rate if there are a large number of events where a single machine is 

down for a short period of time.   

 It is relatively easy to understand why a firm would target backorder rate 

as a control in order to ensure customer satisfaction, revenue maximization, and 

regulatory compliance.  If tools are down then all of the foregoing suffer.  

However, fill rate may be a dominant concern and key target, if any excursion, 

albeit for a short time, has unacceptable consequences.  The simplest reasoning 

behind targeting fill rate is that if customers see a frequency of problems they will 

associate the product with poor quality and perceive a lack of reliability.  Other 

examples of reasons to target fill rate levels include cases where a failure is 

associated with immediate and irrevocable harm. 

In the following example we study a case where the target fill rate of 

machine type 1 is benchmarked to maintain a certain fill rate level and search for 
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the policy or policies that optimizes the fill rate for machine type 2 demand.  We 

explore a case where Part 1 fill rate is required to be greater than 80 percent and 

examine the Part 2 fill rate at various target stock levels for Part 1 and Part 2.  

This analysis considers a two-day lead for parts delivery using the base case 

reliabilities for Part 2 where p2 – 0.1 and p21 = 0.15.   

What we observe in this comparison, shown in Figure 4.14, is that 

increased probability of substitution results in slightly depressed fill rates for Part 

2 demand by machine type 2.  This demand is most pronounced at low target 

inventory levels for Part 1 and then becomes a stronger factor as target inventory 

of Part 2 rises.  This again, is a reaffirmation that Part 2 measures of goodness 

diminish when we use Part 2 stock to improve Part 1 measures of goodness.   

 

 

Figure 4.14 Fill rate of Part 2 as a Function of Target Stock Levels at Various 
Substitution Rates for Targeted Service Level Policy 
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Targeted Inventory Policies 
 

There are many cases where inventory size is a key constraint as well as 

a measure of goodness.  For example, in cases where the inventory is very 

expensive, the cost of capital associated with holding even moderate levels of 

stock can be prohibitive.  An example of this type of inventory constraint is the 

inventory parts for a nuclear reactor.  In other cases, the inventory item might be 

perishable or very near obsolescence.  Another factor that might make inventory 

a constraint is very limited storage area such as is often the case when 

customers allocate on-site areas for storage of a vendor’s service parts. 

Finally, the part might itself be dangerous and storage of large quantities 

of the component may be very risky or even illegal.  Many chemicals fall into this 

classification (in fact, the facilities’ hazardous materials business plan will put firm 

limits on the storage of these chemicals in the United States).  In the exploration 

of what occurs in substitution when inventory levels are constrained we attempt 

to develop a policy to maximize performance through our key measures of 

goodness with targeted inventory some interesting results occur. 

In this case we fix the target stock for Part 1 very low as might be the case 

when Part 1 is a part that must be kept low.  A good example for this case would 

be if Part 1 were a dangerous chemical that is restricted under the Toxic 

Substances Control Act (TSCA) but Part 2 was a non-restricted chemical.  We 

hold inventory for Part 1 low at a steady state value of {0.15 – 0.35} units.  In 

order to achieve this we set a target stock level for Part 1 of one unit. In the two-

day lead model we find that we cannot achieve these inventory levels without 
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substitution so we compare substitution probabilities ranging from {0.25 - 1.00} 

and observe the response of inventory 1 to changing reliability of the substitute 

and changing target stock levels for Part 2. 

 The results of this experiment are presented in figure 4.15.  It is clear that 

the inventory of Part 2 is quite sensitive to substitution probability as successively 

lower substitution levels result in significantly increased inventory.  In addition, 

lower levels of substitute reliability result in greater consumption of Part 2 as a 

substitute and this effect is amplified at higher levels of substitution. 

 

 

Figure 4.15 Inventory of Part 2 as a Function of Substitute Reliability and Part 2 
Target Stock Level – Two-Day Lead for Constrained Inventory 
Policy 

 

 
To compare the effects of shorter lead time we will look at the same 

example as for the one-day lead case; however, in this case the range targeted 

for inventory 1 has to be slightly higher due to the fact that depletion of inventory 

at any given target is lower; hence we do not find an acceptably large sample in 
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the range used for the two-day case at the target stock level of one unit for Part 

1.  The response of Part 2 inventory levels to changes in decision variables and 

parameters is similar to the previous example.   However, this response is far 

less sensitive to substitution rate and the reliability of the substitute than was the 

case in the two-day lead model, as is shown in Figure 4.16.  This response 

makes perfect sense in that the increased uncertainty in ordering seen in the in 

the two-day model requires heavier substitution so there is greater sensitivity to 

the substitute’s reliability in the two-day lead model than is the case in the single 

day lead model 

 

 

Figure 4.16 Inventory of Part 2 as a Function of Substitute reliability and Part 2 
Target Stock Level – One-Day Lead for Constrained Inventory 
Policy 

  

 
The next permutation of the static inventory policy case that we investigate 

is the response of order levels to changes in the target inventory of Part 2, and to 
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changes in the probability of substitution, when the inventory of Part 1 is 

constrained to a tight target.  First, we look at the two-day lead scenario with s1 

fixed at one unit and steady state inventory of Part 1 kept within the range 0.15 

units to 0.30 units.  For this examination we review the base case probabilities for 

reliability of Part 2 on both machine type 2 and machine type 1. 

 The results of this examination demonstrate that the order rate of Part 1 is 

very sensitive to both the probability of substitution and to the inventory set point 

for Part 2.  As shown in Figure 4.17, orders for Part 1 climb as s2 drops, and 

orders for Part 1 drop as the probability of substitution rises.  The increase in Part 

1 orders with decreasing substitution results from the fact that Part 1 is being 

used to satisfy a greater portion of machine type 1 demand.  Similarly, the 

increase in Part 2 inventory target means that more Part 2 is available when a 

substitution opportunity presents itself and as such there is a larger portion of 

machine type 1 demand filled by Part 2. 

 

 

Figure 4.17 Order Rate Part 1 as a Function of Substitution rate and Part 2 
Target Stock Constrained Inventory Policy with 2 Day Lead 
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Using the same model parameters, we next examine the response of the 

Part 2 order rate.  The plot of order rate for Part 2 vs. Part 2 target stock and 

probability of substitution shown in Figure 4.18 is nearly a mirror image of the plot 

for Part 1 orders.  Orders for Part 2 rise as s2 rises and as the probability of 

substitution rises.  This is again due to the fact that increases in target stock (and 

hence inventory) for Part 2, and increases in the probability of substitution, lead 

to increased usage of Part 2 to fill machine type 1 demand. 

 

 

Figure 4.18 Order Rate Part 2 as a Function of Substitution rate and Part 2 
Target Stock - Two-day Lead Constrained Inventory Policy  

 

 
We next look at a scenario that concentrates on customer satisfaction 

when inventory for Part 1 is targeted.  The first case is the one-day lead model 

with a narrow target range for inventory 1 between 0.25 units and 0.45 units.  We 

constrain the inventory target for Part 1 (s1) at one and allow s2 to vary.  Figure 
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4.19 shows the steady state total fill rate vs. s2 as the reliability of the substitute 

ranges from 0.05 to 0.25. 

We can observe that higher substitution rates correlate with higher total fill 

rate at all inventory levels, and all reliabilities, for the substitute.  This result is 

simply because when we choose not to substitute, although substitution is 

possible, then we are choosing to allow a machine type 1 to experience a 

downtime that it would not experience if we opted to substitute.   

 

 

Figure 4.19 Fill Rate as a Function of Substitute Reliability and Part 2 Target 
Stock at Various Substitution Rates - One-Day Lead Constrained 
Inventory Policy 

 

 
This chart also makes it clear that the reduction to Part 2 inventory from 

reallocation of stock to fill machine type 1 demand does not reduce Part 2 fill rate 

to the extent that overall fill rate is reduced. 
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Relative Part Reliability 

One factor that bears examination when considering substitution policy is 

the relative reliability of the parts involved in the exchange.  That is, we are 

curious as to what are the ramifications on substitution policy when the part that 

can serve as a substitute is more or less reliable in its native application than the 

part for which it substitutes.  In order to explore this area we examined 

performance with a wide array of reliability ratios for Part 2 with respect to Part 1.  

Specifically, we considered p2 = {0.05, 0.1, 0.15, 0.20, 0.25}. 

First we examine the customer service based measure of goodness, total 

fill rate, at various Part 2 target stock levels and various values for Part 2 

reliability as a primary part on machine type 2.  In this examination we hold the 

target stock level for Part 1 at one because we really want to observe the impact 

of substitution and Part 2 reliability upon customer service levels.  Were we to 

allow s1 to be too high, it would mute the responses of independent variables to 

changing decision variables and parameters.  We looked at the two-day parts 

lead model and the results of our experiment are shown in Figure 4.20. 

What we observe in this scenario is that substitution, as in earlier 

experiments, benefits total fill rate because failure to substitute when an 

opportunity to do so presents itself, must impact fill rate.  We also see that total 

fill rate rises with increased s2 and rises with increased reliability of Part 2.   

The unique information from this experiment is that the performance 

increase on fill rate levels for high substitution probability policies increases with 

increased relative reliability of Part 2 and also increases with increased s2.  
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Examination of Figure 4.21, an alternate view of the same experiment, reveals 

that this advantage is not linear, but rather grows in intensity as p2 improves and 

as s2 grows.  This response occurs due to the fact that higher levels of s2 

provides a cushion to compensate for the reallocation of parts to machine type 1 

which would otherwise reduce the ability to meet demand on machine type 2.  

Higher reliability of Part 2 on machine type 2 means that the demand from 

machine type 2 is smaller and increases the likelihood that any given level of s2 

will meet demand.  

 

 

Figure 4.20 Total Fill Rate as a Function of Part 2 reliability as a Primary Part 
and as a Function of Part 2 Target Stock for Various Substitution 
Rates - Two-day Model with Part 1 Target Stock Constrained 
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Figure 4.21 Alternate View of the Plot in 4.20 
 

 
Next, we target the order level for Part 2 in the single day lead case on the 

range {1.4 - 2.0}, while keeping s1 static at two units of inventory, and examine 

the response of the backorder rate for Part 1 as substitution policy and reliability 

of Part 2 varies.  What we observe in Figure 4.22 is that the backorder rate for 

Part 2 is, not surprisingly, very sensitive to s2.  In addition, it is very apparent that 

backorder rate of Part 2 is very sensitive to the reliability of Part 2 on machine 

type 2.  Very small changes in reliability result in large changes to the backorder 

rate.  As the failure rate of Part 2 on machine type 2 moves from 0.15 to 0.20, the 

backorder rate of Part 2 climbs 67 percent.  Finally, as observed in earlier cases, 

substitution of Part 2 onto machine type 1 increases the backorder rate for Part 2 

because Part 2 inventory is reallocated to meet machine type 1 demand and thus 

less available to meet machine type 2 demand. 
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Figure 4.22 Backorder Rate for Part 2 as a Function of Part 2 Reliability as a 
Primary Part and as a Function of Part 2 Target Stock Levels for 
Targeted Part 1 Ordering at Various Substitution Rates - One-Day 
Lead 

 

 
We conclude our evaluation of Part 2 reliability as a driver of policy with an 

examination of the impact of p2 changes on ordering.  Figure 4.23 demonstrates 

the two-day lead scenario where s1 is constrained to one unit and s2 is fixed at 

two units.  In this case, we explore the sensitivity of ordering for each part type 

vs. changes to Part 2 target inventory and probability of substitution.  What we 

observe in this trial is that Part 2 ordering is very sensitive to Part 2 reliability and 

slightly sensitive to Part 2 target stock level.  This can be explained by fact that 

higher failure rates of Part 2 on machine type 2 obviously require more part 

orders in order to restock the more frequent failures.  Setting higher stock targets 

for Part 2 means it is more likely that Part 2 will be available for substitution and 

hence more likely to be backfill for Part 1 which effectively increases the demand 
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rate for Part 2.  Part 1 ordering is slightly sensitive to Part 2 reliability and slightly 

sensitive to Part 2 stock levels.  The reasons for the Part 1 ordering sensitivity 

include the fact that greater failures of Part 2 in its native application make it less 

likely that Part 2 will be available as a potential substitute and hence more 

demand for machine type 1 will fall upon Part 1 inventory.  Conversely, increased 

stock targets for Part 2 make it more likely that Part 2 will be available to meet 

machine type 1 demand as a substitute and this ultimately reduces the demand 

for machine type 1 filled by Part 1 orders. 

 

 

Figure 4.23 Total Order Rate for Each Part Type as a Function of Part 2 
Reliability as a Primary Part and as a Function of Substitution Rate 
for Targeted Part 1 - Two-day Lead 
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Approximation Method for Larger Models 

The algorithm we use to build a transition probability matrix, and solve for 

the steady state vector, demonstrates that a Markov Chain is a very powerful tool 

for developing stocking and substitution policies.  In addition, this work has 

demonstrated that the myopic model in which single-period results are used to 

develop policy has serious limitations.  However, as we have seen in this model, 

as the lead time grows larger the size of the state set needed to contain the 

information on the state of the system grows rapidly.  As a result, the size of the 

matrices needed to handle the problem quickly demand more computing 

resources and computing time than is reasonably available.  The demands on 

computing resources also grow rapidly as the population of machines grows.  

Cohen and Barnhart (2006) demonstrated that these problems can become 

unsolvable when the number of machine classes or number of parts grows. 

Therefore it is desirable to look for approximation methods in order to 

successfully approach many real world applications of this research. 

The usefulness of modeling increased lead time for larger numbers of 

machines, coupled with the computational difficulty of doing so, led us to explore 

methods of reducing calculation intensity.  We developed a method that 

significantly reduced the computational complexity and we call this method the 

Boycott Method.  

The Boycott Method exploits the fact that a large number of states may 

have some non-zero probability of occurring but are so statistically unlikely that 

they could be neglected without noticeably altering the steady state values, or 
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our policy decisions, as long as ignoring these highly unlikely states did not 

interfere with our ability to find the steady state vector. 

In the Boycott Method we enumerate the state sets through an entire 

iteration of the algorithm, and those state sets that have a probability less than 

the boycott threshold are added to a boycott list to be excluded in future passes 

through the algorithm with higher values of target inventory.  This excludes those 

state sets below the boycott threshold and child states derived from these 

boycotted states.  The end result is a significantly reduced universe of state sets 

as target inventory grows and this helps to slow the growth of the transition 

probability matrix with higher target inventory.  This also reduces the number of 

passes through the nested loops needed to process each state variable set in the 

state variable set universe. 

The obvious question when implementing a method such as the Boycott 

Method is how small can a number be before we can safely ignore it?  A starting 

point is the machine epsilon for the computing system performing the calculation.  

Machine Epsilon is that number that when added to 0 is indistinguishable from 

zero because of binary number storage.  On most personal computers that 

number is of the order of magnitude of 10-16.  Clearly numbers smaller than 

machine epsilon are of little utility in performing any calculation.  Carrying such 

numbers greatly increases the size of memory required to calculate large Markov 

Chains and severely interferes with exploiting the advantages of sparse array 

processing. 
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As a practical matter, the boycott threshold can be considerably larger 

than the machine epsilon without impacting calculation.  In our experiments we 

found that a boycott threshold of 10-8 yielded excellent results as is shown in the 

following test case. 

We conducted an experiment in which we considered a system with a 

one-day lead and the following values for parameters and decision variables 

p�� = 0.1  

p�� = 0.15  

p�� = 0.1  

p>= {0,0.25,0.5,0.75,1} 

s�= {1,2,3} 

s�= {1,2,3} 

n�= 5 

n�= 5 

 
Paired t-test Validation for Approximation Method 

We ran this model for a scenario in which no boycotting occurred and for a 

model in which a boycott list was used. Upon completion of this model we 

generated all of the measures of goodness as normal and we calculated the 

difference between each pair of data generated by the non-approximation 

method and the approximation method.  Before proceeding with a paired t-test 

we subjected the differences in each paired set of variables to an Anderson-

Darling test for normality to ensure that the differences in the pairs were normally 
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distributed.  For each measure of goodness we found that the p-value for the 

normality test was <0.005 and hence we could not reject the null hypothesis that 

the differences in the pairs were normally distributed at the 99% confidence level. 

Since we were comfortable that our data would meet the conditions 

needed to use a paired t-test we proceeded with that test for each measure of 

goodness. We paired the data for each measure generated by the approximation 

method, with the corresponding data generated by the non-approximation 

method.  We next used a paired t-test to determine if there was a statistically 

significant difference in the data produced by each model.  Table 4.2 shows the 

results of the statistical testing.  It is clear that the approximation method 

produces results that are very close to the results from the standard (non-

approximation) method (in the test results, the presence of “NS” in front of the 

variable indicates it is from the non-approximated model).   

In evaluating the results, we first note that for all of comparisons the 

standard deviation (and hence the variance) is very nearly identical, and often 

identical, in each test.  We further note that the 95% confidence intervals include 

zero.  In fact, zero is very near the mean for each case.  The results in Table 4.2 

clearly indicate that we cannot reject the null hypothesis, which is that the mean 

of the difference in steady state values between the non-approximation method 

and the standard method is zero at the 95% confidence level.   
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Table 4.2 Results of Paired t-test Comparing Approximation Method to Non 
Approximation Method 

 

Steady 

State 

Measure 

Paired t-test Result (H0: ����������� = �) 

Inventory 

Part 1 

             N      Mean     StDev   SE Mean 

NSI1        45   1.16445   0.67670   0.10088 

I1          45   1.16440   0.67672   0.10088 

Difference  45  0.000049  0.854640  0.127402 

 

 

95% CI for mean difference: (-0.256713, 0.256812) 

T-Test of mean difference = 0 (vs not = 0): T-Value = 0.00  P-

Value = 1.000 

Inventory 

Part 2 

             N       Mean     StDev   SE Mean 

NSI2        45    1.09354   0.66050   0.09846 

I2          45    1.09355   0.66052   0.09846 

Difference  45  -0.000010  0.851100  0.126874 

 

 

95% CI for mean difference: (-0.255709, 0.255689) 

T-Test of mean difference = 0 (vs not = 0): T-Value = -0.00  P-

Value = 1.000 

Fill Rate 

Part 1 

             N       Mean     StDev   SE Mean 

NSF1        45   0.924437  0.079636  0.011871 

F1          45   0.924443  0.079641  0.011872 

Difference  45  -0.000007  0.083035  0.012378 

 

 

95% CI for mean difference: (-0.024953, 0.024940) 

T-Test of mean difference = 0 (vs not = 0): T-Value = -0.00  P-

Value = 1.000 

 

Fill Rate 

Part 2 

             N       Mean     StDev   SE Mean 

NSF2        45   0.889385  0.099873  0.014888 

F2          45   0.889396  0.099875  0.014888 

Difference  45  -0.000010  0.129940  0.019370 

 

 

95% CI for mean difference: (-0.039049, 0.039028) 

T-Test of mean difference = 0 (vs not = 0): T-Value = -0.00  P-

Value = 1.000 

Total Fill 

Rate 

             N       Mean     StDev   SE Mean 

NSF12       45   0.826190  0.122856  0.018314 

F12         45   0.826201  0.122866  0.018316 

Difference  45  -0.000012  0.144771  0.021581 

 

 

95% CI for mean difference: (-0.043506, 0.043483) 

T-Test of mean difference = 0 (vs not = 0): T-Value = -0.00  P-

Value = 1.000 
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Table 4.2 continued 
 

Steady 

State 

Measure 

Paired t-test Result (H0: ����������� = �) 

Backorder 

Rate Part 

1 

             N      Mean     StDev   SE Mean 

NSB1        45  0.092016  0.099969  0.014903 

B1          45  0.091987  0.099970  0.014903 

Difference  45  0.000028  0.103988  0.015502 

 

 

95% CI for mean difference: (-0.031213, 0.031270) 

T-Test of mean difference = 0 (vs not = 0): T-Value = 0.00  P-

Value = 0.999 

Backorder 

Rate Part 

2 

             N      Mean     StDev   SE Mean 

NSB2        45  0.136625  0.126965  0.018927 

B2          45  0.136602  0.126965  0.018927 

Difference  45  0.000023  0.165432  0.024661 

 

 

95% CI for mean difference: (-0.049678, 0.049724) 

T-Test of mean difference = 0 (vs not = 0): T-Value = 0.00  P-

Value = 0.999 

 

 
From the foregoing it seems that we have developed a method that poses 

high potential as an approximation method that will enable researchers to explore 

larger incarnations of the unidirectional substitution model with Markov Chains. 

 
Summary of Unidirectional Substitution Model 

Utilizing a Markov chain whose transition matrix is constructed using 

cumulative binomial probabilities, we have been able to successfully construct a 

unidirectional substitution model in which the reliability of a substitute part is 

different from the reliability of the primary part.  In addition, we are able to 

successfully model substitution when the policy maker chooses to substitute 

some of the time but not all of the time.  
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We demonstrate that substitution always increases fill rate, and reduces 

the backorder rate, on the machine upon which the substitution is made 

(machine type 1). We also observe that the partial substitution scenario has great 

value to the policy planner because substitution is not a panacea for maximizing 

the customer satisfaction to cost ratio.  In particular, substitution consistently 

improves the measures of goodness with respect to Part 1 inventory, machine 1 

part fill rate, and machine 1 part backorder rate.  However, this improvement is at 

the expense of decreased customer service, increased ordering, and increased 

steady state inventory on the machine whose primary part is used as a substitute 

(machine type 2).  

Substitution reallocates machine type 2 inventory to meet machine type 1 

demand.  The policy maker must either compensate for this reallocation by 

raising Part 2 target stock levels or else accept lower machine type 2 part fill rate 

and higher machine type 2 backorder levels.  Also, Part 2 ordering will rise with 

substitution and any cost increases from this must be considered when choosing 

substitution.  Generally, the deterioration in machine type 2 performance metrics 

is less intense in magnitude than the increase in machine type 1 performance 

metrics.  As a result, when the policy making decision utilizes minimum customer 

service indicators, overall backorder rate and fill rate improve with increasing 

substitution rates.  Total inventory and ordering rise with increased substitution if 

Part 2 is less reliable on machine type 1 than the primary part and decrease 

when the opposite is true. 
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The tradeoff between inventory levels and customer service, as well as 

the tradeoffs between machine type 2 performance indicators and machine type 

1 performance indicators, grows as the substitute becomes less reliable. The 

impact of reliability on the substitution results very much justifies the 

computational effort required to model dissimilar reliability. 

Ultimately this model confirms the need for multidimensional analysis in 

order to execute effective decision making on service part substitution policy.  

With a good model for steady state performance indicators, and a solid 

understanding of the complex tradeoffs involved with substitution, the policy 

maker can analyze the cost ratio of the parts involved, the holding cost of the 

various inventories, and backorder costs associated with each machine class, 

and optimize expected value by matching the cost numbers with trade off 

relationships. 
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CHAPTER 5 
 

GENERAL SUBSTITUTION OF A NON-PRIMARY PART 
  

FOR MULTIPLE MACHINE TYPES 

 
 

Introduction 

In this section we examine the substitution problem from a different 

perspective and with an alternate approach than we have employed in the 

unidirectional substitution problem.  The opportunity we explore in this case is 

one in which a general purpose or higher rank component is used as a substitute 

for the primary part for multiple machine types.  The primary point of difference 

between this problem and the unidirectional substitution problem is the fact that 

the substitute is not a primary part for any of the machine types.   

This type of substitution is ubiquitous in everyday life and also is common 

industry practice.  A simple example of this type of substitution occurs when we 

place a spare tire on our car in place of the primary tire which has gone flat.  We 

would never choose to operate with the spare tire as it gives a far less 

comfortable ride.  However, the spare tire will get us home and prevents our 

machine from being non-operational.   

Similarly, it is very common for service personnel to make a substitution of 

a part with some part not primary to any of the machines in use if that part might
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keep a machine operational.  What is not common is planning for the systematic 

use of such parts.   

An example of this type of substitution in the pollution control industry 

follows.  Imagine there are two processes, process one has a waste stream 

where there is only one contaminant and that contaminant is hydrogen fluoride.  

This type of contaminant can be scrubbed utilizing an adsorbent laden with ferric 

oxide.  Process two has a waste stream containing arsine which is scrubbed very 

effectively with an adsorbent laden with cupric oxide.  Neither of these 

adsorbents would work for the waste stream of the other process, but each is 

very effective and very safe on its targeted waste stream.  However, it is possible 

to utilize an adsorbent comprised of activated carbon laden with various metal 

oxides to abate both of these processes.  The caveat is that the carbon is not 

preferred to the primary parts because there is a danger of fire if throughput 

grows too high, and as such, production must be throttled or additional cooling 

must be supplied to the pollution control device (typically in the form of nitrogen 

gas purging). 

The general substitution model could potentially offer many of the benefits 

of the unidirectional substitution model but is quite clearly different and must be 

modeled as such.  In the following pages we will examine such a model. 

 
Nomenclature of the General Substitution Model 

SA = Target inventory of part A 

SB = Target inventory of part B 
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SC = Target inventory of part C 

It
A
 = Inventory of part A at time t 

It
B
 = Inventory of part B at time t 

It
C
 = Inventory of part C at time t 

nA = Number of machine type A 

nB = Number of machine type B 

PA = Probability of substitution for part A 

PB = Probability of substitution for part B 

λA= Failure rate of part A 

λB= Failure rate of part B 

µ
A
= Delivery rate of part A 

µ
B
= Delivery rate of part B 

µ
C
= Delivery rate of part C 

i = A subscript for the inventory state of It
A
 

j= A subscript for the inventory state of It
B
 

k= A subscript for the inventory state of It
C
 

Pi,j,k= Steady state probability of state where It
A = i and ItB = j and ItC = It

C
 

Downi,j,k= The rate of moving from state It
A
, ItB, ItC to a state (It

A
 -1), It

B
 , ItC 

Up
i,j,k= The rate of moving from state It

A
, ItB, ItC to a state (It

A
 +1), It

B
 , ItC 

Lefti,j,k= The rate of moving from state It
A
, ItB, ItC to a state It

A
, (It

B
 +1) , ItC 

Right
i,j,k= The rate of moving from state It

A
, ItB, ItC to a state It

A
, (It

B
 -1) , ItC 
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Ini,j,k= The rate of moving from state It
A
, ItB, ItC to a state It

A
, It

B
 , (It

C
 -1) 

Outi,j,k= The rate of moving from state It
A
, ItB, ItC to a state It

A
, It

B
 , (It

C
 +1) 

 
General Substitution Model 

In our model there are two machine types which we will refer to as 

machine type A and machine type B.  Each of these machines uses a primary 

part which we refer to as Part A and Part B respectively.  Part A and Part B are 

sufficiently different in order to create a scenario in which neither part could be 

used as a substitute for the other part.  There is, however, another part that can 

be used as a substitute part for either Part A or Part B; we will refer to this part as 

Part C.  Although Part C can be used as a substitute for either Part A or Part B, it 

is not as desirable to use Part C on either machine class as it is to use the 

primary component, and as a result the customer would prefer to use the primary 

component (consider our spare tire analogy).  For example, Part C might be 

more expensive than either of the primary parts or it might have a higher storage 

or shipping cost or might simply be annoying (noisy, smelly, etc.).   

In this scenario, part replacement and ordering occur on a continuous 

basis and when a part fails it is replaced with its primary part if that part is 

available.  Parts are ordered such that a predetermined target inventory for each 

part type is met.  In this ordering plan new orders are equal to the target 

inventory minus current inventory (unless an overstock scenario exists, in which 

case no orders are made).  If the primary part is not in stock, the substitute part – 

Part C – might be used to maintain the operation of the machinery and if a choice 
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is made to use this part it is immediately placed into service.  In our model, 

substitution is not always mandated under all policies and the probability that 

substitution will occur is a decision variable that is controlled by policy makers.  If 

no inventory for a primary part is available upon the arrival of a failure, and 

substitution is not performed, then a backorder state exists and a machine is 

idled.  The idled machine and the associated part backorder state are 

represented in our inventory model as a negative inventory.   

We define the state of the system as the inventory level of Part A, Part B, 

and Part C.  The state of the system is noted at any change in any inventory 

immediately upon the occurrence of the change; as a result, transient states are 

represented although they would immediately be rectified by service personnel to 

correct the suboptimal configuration represented.  As an example, we might have 

the state 
I
t

A, ItB , It
C�  where It

A
 is negative and I��   is positive even though the 

substitution policy is PS = 1.  Service personnel would immediately perform a 

substitution that raised It
A
 by 1 and lowered It

C
 by 1; however ,this substitution 

would not change the fact that the state 
I
t

A, ItB, It
C� had existed and hence there is 

some steady state probability associated with being in state 
I
t

A, ItB, It
C�, exiting 

state 
I
t

A, ItB, It
C�, and entering state 
I

t

A, ItB, It
C�.  As a result, the rate of entry and 

exit to the transient state is a positive value as is the steady state probability of 

state 
I
t

A, ItB, It
C�. 

We assume (1) that the quantity of each type of machine is sufficiently 

large and of a sort that the failure rate of each part type is well known and that 
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the arrival rate of failures follows a Poisson distribution.  We further assume (2) 

that an idle condition on any machine does not impact the failure rate perceptibly.  

The first assumption (1) is fairly straightforward and is common in the 

reliability literature.  It is based upon the principle that by accumulating a large 

number of non-Poisson rare events that have no natural tendency to cluster, or 

Poisson processes yield a Poisson Process (Liu and Lee, 2007).  Alternatively, 

this assumption could be realized if the part itself exhibited exponential failures 

as an innate characteristic (such as is the case with many electronic 

components).  The ultimate verification of this result is empirical as we assume 

that we observe Poisson arrivals with mean λ.  The second arrival assumption 

(2) is based upon observation and the presence of a sufficiently large number of 

machines.  In this case we have a sufficiently large population of machines 

where the potential for any given arrival is rare and is not influenced by prior 

failures. Further, we assume that the service rate for new part delivery is 

exponential.  In addition to the foregoing we assume exponential service rates, 

also common in the reliability literature. 

Changes in state with respect to parts arrivals are a function of the 

difference between inventory level and inventory set point multiplied by the rate 

of arrival for a given part.  The parts arrival rate rules are presented for 

visualization as movement along the appropriate axis in a three dimensional 

chart with dimensions (H x W x D) = [(SA+nA+1) x ((SB+nB+1) x (SC+ 1)].  The 

movement rules for parts arrivals are: 
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                     Upi,j,k = 
SA – I���μ� (5.1) 

                   Lefti,j,k =
SB – I� � μ  (5.2) 

                    Outi,j,k =
SC – I��� μ� (5.3) 

Movement with respect to failures must consider the fact that substitution 

will impact the direction of movement.  Probability of substitution is dictated by 

limits imposed by inventory in that substitution does not occur if adequate stock 

of the primary part exists, nor does it occur if inadequate quantities of the 

substitute are available.  In addition the probability of substitution is further 

constrained in this model by the fact that we allow the policy maker to set the 

substitution rate as a decision variable.  Probability of substitution is subject to 

the following rules: 

 P� = ¤0 for I��, I� , I�� such that I�� > 0 ∪ I�� = 0As de�ined otherwise X (5.4) 

 P  = ¤0 for I��, I� , I�� such that I�  > 0 ∪ I�� = 0As de�ined otherwise X (5.5) 

 
Now that we have defined the rules governing the probability of 

substitution we can address movement resulting from part failures. This 

movement is governed by the following relationships. 
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 Down�,<,¨  = © 0 if I�� = −n�λ� if I�� > 0 «¬ (I�� = 0 and 0 ≥ I�� > −n�)λ� (1 − P�) X (5.6) 

 Righti,j,k  = © 0 if I�  = −n λ  if I�  > 0 «¬ (I�� = 0 and 0 ≥ I�  > −n λ  (1 − P ) X (5.7) 

 

            In�,<,¨   =
RT
U λ�P� if I�� ≤ 0 and I�  > 0 123 I�� > 0

λ P  if I�  ≤ 0 and I�� > 0 123 I�� > 0
λ�P� + λ P    if I�� ≤ 0 and I�  ≤ 0 and I�� > 00 otherwise

X 
(5.8) 

 
The preceding relationships in equations 5.1 through 5.8 collectively 

govern the rate of movement into each state set in the state set universe.  They 

also govern the rate of movement out of each state set in the state set universe.  

At steady state we cannot have accumulation and the rate of movement into 

each state must equal the rate of movement out of that state.   

It necessarily follows that equation 5.9 must hold for the entire network of 

cells in order to maintain steady state. 

 Pi,j,k (Upi,j,k + Lefti,j,k + Downi,j,k + Righti,j,k + Outi,j,k + Ini,j,k)                           = P(i-1),j,k Up(i-1),j,k + Pi,(j-1),kLefti,(j-1),k                               + P(i+1),j,k Down(i+1),j,k + Pi,(j+1),kRighti,(j+1),k                                   + Pi,j,(k+1)Ini,j,(k+1) + Pi,j,(k-1) Outi,j,(k-1)  

(5.9) 

∀        − n�  ≤ I�� ≤ °̄                  − n   ≤ I�  ≤ ¯±                        0 ≤ I�� ≤ ¯²  
The steady state requirement can be combined with the requirement that, 

since we are in exactly one state at any given point in time, all probabilities must 

sum to one in order to generate a set of equations sufficient to produce unique 

steady state probabilities for each state set. 
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 o P�,<,¨ = 1³,´,µ  
(5.10) 

For: 

∀        − n�  ≤ I�� ≤ °̄                  − n   ≤ I�  ≤ ¯±                        0 ≤ I�� ≤ ¯²  
Figure 5.1 shows a graphical representation of the state transition model.  

Movement in the inventory of Part A is on the vertical axis, movement of Part B 

state is on the horizontal axis, and movement with respect to substitute inventory 

(Part C) is upon that axis which traverses in and out of the paper.  

 

  
 

Figure 5.1 Visual Representation of the State Transition Model 
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Implementation of the Algorithm 

The algorithm described above was solved in Mathematica 7.0 utilizing the 

programming characteristics of that software to create a conditional looping 

structure to generate the state set and movement rules.   We then use the 

solving capabilities of that Mathematica to solve the resultant system of linear 

equations.  The algorithm is in the appendix at the end of this work for interested 

readers to examine.   

For all models considered, we examined the scenario where the number 

of machines of each class was 30; i.e. n1 = n2 = 30.  We varied SA and SB 

independently from a minimum value of 3 to a maximum value of 8.  We varied 

SC from 0 to 3 and PA and PB through the range  {0, 0.25, 0.5, 0.5, 0.75, 1.0}.  

For the case in which PS was zero, SC was held strictly at zero because there is 

no policy where it makes sense to stock Part C when there is no possibility of 

substitution.  Although the actual size of the state set varied depending upon the 

values tested for SA, SB, and SC, the minimum number of unique entities in the 

state sets was 1024 for SA=SB=1 and SC = 0 (no substitution model) while the 

maximum span was 6084 for SA = SB = 8, SC = 3 (maximum target inventories 

studied).  Of course, as was shown in Equation 5.9, this gave us 6084 equations 

in the same number of variables (with equation 5.10 incorporated into the system 

of equations, one of the equations generated by equation 5.9 was discarded so 

that the number of equations had the proper degrees of freedom).  

In our algorithm, we assigned different values to the reliability of the 

individual parts with λA = 0.3 and λB = 0.6.  We assigned the same arrival rate for 
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parts to each part type, thereby yielding two separate scenarios for the 

relationship between a given part class and its arrival rate, with µA = µB = 0.1.  

We varied µC through the sequence { 0.2, 0.1, 0.05 }, thereby creating the 

opportunity to test for the sensitivity of substitution measures of goodness with 

service rates on the substitute half the value of a primary part, equal to a primary 

part, and double that of a primary part.   

 
Analysis of Data from General Model 

Since customer satisfaction is often a motivation for substitution, and is 

always a goal of the successful enterprise, we begin our analysis by examining a 

scenario where we target a minimum total fill rate; where fill rate is defined as 

that portion of the time when we satisfy all demand. 

In this scenario, we examine the case where µC = 0.5 (substitute can be 

replenished half as fast as either primary part) across the array of substitution 

policies for those scenarios in which a total fill rate of at least 90% is 

demonstrated.   

Table 5.1 shows those inventory policies that result in fill rates above the 

targeted minimum level of 90%.  Several things are apparent from examining 

these results.  First, higher probability of substitution clearly leads to higher fill 

rates.  This is expected due to the fact that foregoing substitution when the 

opportunity is presented is equivalent to electing to leave a machine down.  We 

might well ask the question; “what is the best inventory policy for these 

substitution rates?”  In answer, the first three lines of the table are very revealing 
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because we can observe that a very small drop in total fill rate results in 

significantly reduced inventory for Part A and a slight decrease in Part C 

inventory.  Consideration should certainly be given to a policy where we can 

lower inventory by 10.5% while dropping fill rate by only 1.2% and still achieve a 

fill rate significantly above the minimum target level. 

Another very interesting aspect of the results from our model can be 

observed in Table 5.1 near the bottom of the results.  If we compare the 17th and 

18th rows we note that a substitution policy where substitution occurs only 75% of 

the time appears superior to a policy where substitution is always performed.  

The decision variable combination with SA = 5, SB = 8, SC = 3 with Ps = 0.75 has 

slightly higher inventory for Part B and Part C than the SA = 8, SB = 7, SC = 3 with 

Ps = 1.0 policy.  However, the former policy has a significantly reduced inventory 

of Part A and a slightly higher total fill rate. Note that the ( 5, 8, 3,0.75 ) policy has 

a total steady state inventory of 6.51 vs. the sum of inventory for the ( 8,7,3,1 ) 

policy which has a total steady state inventory of 8.45.  Of course, consideration 

would have to be given to the relative cost of Part A vs. Part B, but it is very likely 

that the policy incorporating the lower probability of substitution is superior in this 

instance.  Many similar examples can be found in this table and in other sections 

of the data.  The key message is that, although substitution can greatly enhance 

fill rate at any given inventory level, care must still be taken to optimize 

substitution policy for the target inventory for each part class.  Moreover, if one 

product class is significantly more expensive to carry in inventory then 
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substitution can be used to reduce the inventory of that part while maintaining 

customer satisfaction. 

 
Table 5.1 Inventory for Policies with Fill Rate Greater than 90 Percent 
 

Total 

Fill Rate 

Probability 

of 

Substitution SA SB SC 

Part A 

Inventory 

Part B 

Inventory 

Part C 

Inventory 

95.46% 1 8 8 3 5.02 2.61 1.91 

95.14% 1 7 8 3 4.05 2.60 1.86 

94.29% 1 6 8 3 3.13 2.60 1.76 

94.28% 0.75 8 8 3 5.02 2.58 2.00 

93.91% 0.75 7 8 3 4.05 2.58 1.96 

92.95% 0.75 6 8 3 3.12 2.57 1.87 

92.80% 1 8 8 2 5.02 2.54 1.17 

92.55% 0.5 8 8 3 5.01 2.53 2.15 

92.36% 1 7 8 2 4.05 2.53 1.13 

92.26% 1 5 8 3 2.27 2.58 1.59 

92.12% 0.5 7 8 3 4.04 2.53 2.11 

92.04% 0.75 8 8 2 5.02 2.52 1.22 

91.58% 0.75 7 8 2 4.04 2.51 1.19 

91.22% 1 6 8 2 3.11 2.52 1.06 

90.99% 0.5 6 8 3 3.10 2.53 2.03 

90.91% 0.5 8 8 2 5.01 2.49 1.32 

90.65% 0.75 5 8 3 2.25 2.56 1.70 

90.42% 1 8 7 3 5.02 1.91 1.52 

90.41% 0.5 7 8 2 4.04 2.49 1.29 

90.36% 0.75 6 8 2 3.10 2.51 1.13 
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Table 5.2 demonstrates a targeted backorder policy with backorders held 

to less than one for each machine type part.  There is clearly decreased 

inventory for equivalent backorder levels as the probability of substitution rises 

(see highlighted region). 

 
Table 5.2 Policies where Backorder Rate for Both Parts is Below 1 
 

Ps SA SB SC I¶¶�  I¶¶   I¶¶�  
Total 

Inventory 
Part A 

Backorders 
Part B 

Backorders 

0% 3 6 0 0.67 0.96 0 1.64 0.67 0.96 

100% 3 6 1 0.73 1.05 0.16 1.93 0.55 0.8 

75% 3 6 1 0.72 1.04 0.19 1.95 0.56 0.8 

50% 3 6 1 0.72 1.04 0.23 1.99 0.57 0.81 

100% 3 5 3 0.8 0.73 0.5 2.03 0.4 0.88 

25% 3 6 1 0.71 1.03 0.34 2.08 0.58 0.82 

75% 3 5 3 0.79 0.72 0.6 2.1 0.41 0.9 

0% 3 7 0 0.67 1.57 0 2.24 0.67 0.57 

50% 3 5 3 0.77 0.69 0.78 2.25 0.43 0.93 

100% 3 6 2 0.78 1.13 0.38 2.28 0.44 0.65 

 

 
As we indicated earlier, one area we wish to explore is whether a 

differential in delivery time could impact the benefits of substitution.  It is often the 

case that a part can be garnered locally or with a fast lead and it may be 

tempting to consider such parts as substitutes in order to enhance customer 

satisfaction or maintain smaller inventory for a given level of customer 

satisfaction. 

The plot in Figure 5.2 explores the relationship between the policy 

variables, target inventory levels and substitution policy, vs. the dependent 

measure of goodness, total fill rate.  This plot demonstrates how the relationship 
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varies as the substitute part becomes ever more available.  The bottom layer in 

the plot shows a substitute that arrives half as rapidly as a standard part (µC = 

0.5), the middle layer shows the results when the substitute arrives at the same 

rate as the primary parts (µC = 1.0), and the top layer shows the results when the 

substitute part arrives twice as fast as the primary parts (µC = 2.0). 

 

 

Figure 5.2 Total Fill Rate as a Function of Total Target Stock and the 
Probability of Substitution at Various Substitute Service Rates 

 

 
Next we examine the tradeoff between inventory levels and customer 

satisfaction; in this case, customer satisfaction as manifested by backorder rate.  

We analyze a case where we lock SC at 3 units so that we can assume substitute 

availability is present if desired.  We set the arrival rate of the substitute µ�, at 

0.05 (half the rate of the arrival rate of either µ�, or µ  -- the primary parts) and 

observe that, even with longer lead times for the substitute, substitution still 
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results in either lower inventory for a given customer service level, or a higher 

customer service level is achieved from a given inventory position with 

substitution.  Figure 5.3 is a graphical representation of a comparison between 

the backorder rates associated with various inventory positions for a no-

substitution policy (PA = PB = 0) and for an always-substitute policy (PA = PB = 1).  

The cones represent the no-substitution results and the cubes represent the 

substitute-always results.  The thickness of the base of both the cones and the 

cubes represents the inventory level associated with that data point.  The height 

of the shape represents the backorder rate.  What is apparent from this figure is 

that, for corresponding inventory positions, the no-substitution policy consistently 

results in significantly higher backorder rates.  Also apparent in the figure is the 

fact that those shapes with thick bases consistently have lower backorder rates 

than those with narrow bases.  In essence, this data confirms the fact that 

substitution can result in a lower backorder rate at any given inventory position.  

The data also confirms the corollary to the former statement; that is, a given level 

of customer service (given backorder rate) can be achieved with a lower 

inventory position if substitution is allowed than if substitution is not allowed. 
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Figure 5.3 Weighted Bar Chart Showing the Backorder Rate Associated with 
an Array of Inventory Positions for µC = 0.05 

 

 
As a further step in this experiment we examine how this relationship is 

altered if the substitute is more readily available than the primary parts.  This is a 

very realistic scenario as substitute parts are frequently those that can be found 

in the local market or are more generally manufactured.  Figure 5.4 shows the 

results of this experiment with all of the inputs the same as was the case in the 

preceeding trial excepting the fact µ� was 0.20 in this trial.  Under these 

conditions, the superiority of high substitution policies, with respect to backorder 

rates at given inventory levels, becomes much more pronounced than was the 

case when substitute parts were longer lead.  The message is that if substitute 

parts are readily available on shorter lead times than the primary parts then the 
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case for substituion is much stronger with respect to a customer service vs. 

inventory model. 

 

 

Figure 5.4 Weighted Bar Chart Showing the Backorder Rate Associated with 
an Array of Inventory Positions for µC = 0.20 

 

 
We further investigate the interplay between inventory levels and 

substitution by examining the partial-substitution policy where PA = PB = 0.5 and 

find, not surprisingly, that the same dynamics with respect to inventory levels vs. 

backorder rates happen when a partial substitution policy is employed.  We 

present the weighted bar chart in Figure 5.5 which shows that the results for the 

partial substitution policy are not as desirable as the full-substitution policy, but 

are nonetheless more desirable than the no-substitution policy with respect to 

backorder vs. inventory.   
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Figure 5.5 Weighted Bar Chart Showing the Backorder Rate Associated with 
an Array of Inventory Positions for µC = 0.20 and a partial 
substitution policy 

 

 
As a follow up to the previous line of inquiry, we next investigate the 

scenario where specific customer service levels are targeted and then from that 

point the objective is to minimize cost at those service levels.  In this case we 

constrained the policy to include those cases where the backorder rate for Part A 

and the backorder rate for Part B were between 0.05 and 0.25.  The upper 

boundary was designed to maintain high overall uptime on the equipment, while 

the lower boundary was used to ensure that the expense resulting from setting 

unnecessarily high targets was not incurred.  In actual practice, these numbers 

will be very specific to the application and the customer.  Lower backorder rates 

would be associated with life safety and high value processes while less critical 

operations might target higher backorder values and lower operating cost. 
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Table 5.3 shows those cases that fall within the backorder range arrayed 

from lowest total inventory to highest total inventory.  Although all of the values 

fall within the acceptable service range when service is defined by the backorder 

rate, it is clear that higher inventory levels are associated with lower backorder 

rates.  The same could not necessarily be said for fill rates as it is clear that fill 

rate is more complicated and relies upon a combination of the inventory of the 

part associated with that fill rate and with the number of substitutes available. 

Although generally it is true that higher substitution levels correlate with 

lower backorder levels at a given inventory point, closer inspection of the results 

indicates that more analysis needs to be done in order to develop a policy.  As 

evidence of the foregoing, we submit a comparison of the two highlighted rows in 

Table 5.3.  We will refer to each of these two rows with the decision variable 

policy (SA, SB, SC,PS): note that PS = PA = PB in this case.  If we compare 

(5,8,1,0.25) with (4,8,3,1) we first note that the two policies have essentially 

identical backorder rates for Part A and fill rates for Part A.  Policy (5,8,1,0.25) 

has a lower total inventory than (4,8,3,1), however the cost of the lower inventory 

is a significantly poorer backorder rate for Part B and a poorer fill rate for Part B. 

An analysis of the comparison between policy (5,8,1,0.25) and policy 

(4,8,3,1) would have to weigh any cost savings from lower inventory against the 

decreased customer service costs.  Since both policies meet the backorder 

target, both are acceptable, and the lower inventory of policy (5,8,1,0.25) might 

become attractive.  However, note the lower inventory is a total inventory 

position; the individual components of the inventory position are quite different 
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with policy (5,8,1,0.25) having a higher inventory of Part A but lower inventories 

of Part B and Part C than policy (4,8,3,1).  As such, the relative costs of Part A, 

Part B, and Part C must be considered before simply using total inventory as a 

criterion for cost minimization. 
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Summary of General Substitution Model 

The research on a substitution model that employs a part held solely for 

the purpose of acting as a substitute for primary parts (which we refer to as a 

general substitution model) demonstrates that substitution policies that maintain 

inventory solely for the purpose of substitution can have significant positive 

impacts on customer service levels and inventory holding costs.  

In this research we develop a model utilizing a Poisson process and solve 

the equation set for the ternary part model for steady state probabilities and 

performance indicators.  The results clearly indicate that this method can have a 

significant and positive impact on customer performance metrics. This model 

requires the coordination of additional inventory components and this factor may 

cause some issues when inventory is seriously constrained.  However, unlike 

unidirectional substitution, this method does not cause disruption to any primary 

part performance measure, as the primary parts are not reallocated to alternate 

demands. The results from this model demonstrate that the general substitution 

strategy can increase part demand satisfaction while reducing overall inventory.  

Modeling of probabilistic substitution policies demonstrates that an all-or-

nothing approach to substitution is often not optimal.  At sub-maximum targeted 

performance levels a partial substitution strategy can yield acceptable results 

with significantly decreased inventory. Ultimately the policy must be set by 

weighing the cost of the respective inventories against backorder costs while 

meeting part demand lead targets. 
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CHAPTER 6 
 

CONCLUSION 
 

 
Concluding Remarks 
 

This research demonstrated that substitution adds increased flexibility to 

service parts inventory policy planning and offers the opportunity to improve the 

customer-performance-to-cost ratio.  We have succeeded in completing the tasks 

that we earlier indicated presented an opportunity to add to the literature of the 

profession. 

In the unidirectional substitution model we were able to reach beyond 

myopic models and single-period models to develop steady state performance 

indicators for a reasonably large sized problem.  In addition, we were able to 

model substitution with replacement parts whose reliability was not the same as 

the reliability of the primary part.  Since a substitute part will seldom have the 

same reliability on a machine for which it is not the primary part as it does on its 

native application, the completion of this model helps to bring the substitution 

literature closer to the actual behavior of these parts in commercial applications.   

We also presented a steady state model to examine long-term behavior of 

a substitution policy in which a part that was not a primary part for any system

was carried in inventory solely for the purpose of substitution.  This model 

addressed a real-world practice that is not addressed in the service parts 
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literature.  The model presented in this dissertation is able to project the long-

term ramifications of substitution decisions.  This model demonstrated that the 

use of parts solely as substitutes can be a powerful tool in increasing customer 

service levels without an accompanying increase in inventory levels. 

An approximation method with a high degree of conformity to non-

approximated results was presented and validated though statistical testing.  This 

method, the Boycott Method, will allow the examination of considerably larger 

substitution problems within the constraints provided by modern computing 

systems. 

All of the models that we examined allowed for a partial substitution 

strategy, thus facilitating policy planning that optimizes the level of substitution so 

that policy makers can fine tune the tradeoffs between inventory and ordering 

cost increases against improved customer service.   

In all cases, the models do not present a simple cookbook solution to 

determine optimal parts management strategy.  Rather, the models provide 

information on long term behavior so that strategic planners can view the change 

in performance indicators within the context of their unique inventory costs and 

constraints, variable part cost ratios, and customer service requirements.  

Utilizing their specialized knowledge of the operation, in conjunction with the 

tools presented in this dissertation, strategic planners should be able to increase 

their ability to achieve higher customer service levels while maintaining, or even 

reducing, operating costs. 
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Areas for Further Research 

The unidirectional substitution model considered single-day and two-day 

lead times and assumed that lead time was known with certainty.  Further 

research upon the impact of increased lead time and upon the impact of 

uncertainty in lead time could lead to increased conformity with a larger number 

of applications in industry. 

Adapting the general substitution model to a Markov chain would provide 

the ability to gather more information on variable costs and facilitate the direct 

comparison of the unidirectional substitution model with the general purpose 

substitution model.  A Markov chain solution algorithm for the general purpose 

substitution problem would also permit the use of dissimilar reliability using the 

methodology put forth in this dissertation for the unidirectional substitution model. 
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APPENDIX A 
 

MATHEMATICA CODE FOR THE SOLUTION OF THE 
 

UNIDIRECTIONAL SUBSTITUTION MODEL
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We will use the following set of definitions 

 

First we declare the values for the key parameters of the model  n1 = number of machine 

type 1 

 

n2 = number of machine type 2 

s1 = stock to level for part 1 

s2 = stock to level for part 2 

s1max = iterator limit for s1 

s2max = iterator limit for s2 

i = inventory position of Part 1 

j = inventory position of Part 2 

k = number of substitions active 

v1 = number of part type 1 on order to be delivered + 1 days 

v2 = number of part type 1 on order to be delivered + 2 days 

w1 = number of part type 2 on order to be delivered + 1 days 

w2 = number of part type 2 on order to be delivered + 2 days 

m1 = number of failures of Part 1 on machine type 1 

m2 = number of failures of Part 2 on machine type 2 

m21 = number of failures of Part 2 on machine type 1 

m1max = maximum number of possible failures of Part 1 on machine type 1 

m2max = maximum number of possible failures of Part 2 on machine type 2 

m21max = maximum number of possible failures of Part 2 on machine type 1 

q1 = maximum number of binomial trials Part 1 on machine type 1 

q2 = maximum number of binomial trials Part 2 on machine type 2 

q21 = maximum number of binomial trials Part 2 on machine type 1 

basestates = the array that holds the list of valid states 

p1 = probability that part 1 will fail 

p2 = probability that part 2 will fail on machine type 2 

p21 = probability that part 2 will fail on machine type 1 

ps = probability that a substitution will be made given the opportunity to substitute 

maxn21 = maximum number of possible substitutions 

nX21 = maximum number of substitutions for specific transition 

n21 = actual number of substituions 

I1 = Average inventory of Part 1 

I2 = Average inventory of Part 2 

D=Average level of substitution 

E1 = Average excursions of Part 1 

E2 = Average excusions of Part 2 

E12 = Average excursions of either part 

F1 = Fillrate of Part 1 

F2 = Fillrate of Part 2 

F12 = Fillrate of all parts 

B1 = Backorder rate Part 1 

B2 = Backorder rate Part 2 
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kount1, kount2, kount3, kount4,kount5 flag, a, e, x, y = counters 
 (*First some housecleaning.  Clear all values*) 
ClearAll["Global`*"];starttime=DateString[];Print[AbsoluteTi
me[starttime]]; 
(*We give the extents of the setpoint for this trial*) 
s1max=5;s2max=5; 
(*We give the number of machines for this trial*) 
n1=10;n2=10; 
(*We declare the probability of failure for each part use*) 
p1 = .1; p2 = .1;  
(*We set fixed boundaries*) 
imin=-n1;jmin=-n2;kmin=0;v1min=0;v2min=0;w1min=0;w2min=0; 
(*We establish the range for maximum failures*) 
m1max=Compile[{{i,_Integer},{k,_Integer}},n1-k+Min[0,i]]; 
m2max=Compile[{{j,_Integer}},n2+Min[0,j]]; 
m21max =Compile[{{k,_Integer}},k];  
 
binomial=Compile[{{K,_Integer},{N,_Integer},{p,_Real}},Which
[N�0&&K�0,1,N�0&&K≠0,0,N≠0,PDF[BinomialDistribution[N,p],K]
]]; 
maxn21=Compile[{{i,_Integer},{j,_Integer},{v1,_Integer},{w1,
_Integer},{m1,_Integer},{m2,_Integer},{m21,_Integer},{ps,_Re
al}}, 
   If[i+v1-m1-m21≥0||j+w1-m2≤0||ps�0,0,Min[j+w1-
m2,(m1+m21)-(i+v1)]]]; 
(*Innerflag is a lower limit for looping that moves as a 
function of state variable conditions*) 
innerflag=Compile[{{i,_Integer},{j,_Integer},{v1,_Integer},{
w1,_Integer},{m1,_Integer},{m2,_Integer},{m21,_Integer},{ps,
_Real}},If[ps<1,0,If[i+v1-m1-m21≥0||j+w1-
m2≤0||ps�0,0,Min[j+w1-m2,(m1+m21)-(i+v1)]]]]; 
(*We populate the column headers for the output chart*) 
results= 
  ({ 
    {"I1", "I2", "∆", "V1", "W1", "F1", "F2", "F12", "B1", 
"B2", "s1", "s2", "ps", "p21"} 
   }); 
 
(*grandBinomial is the cumative probility of a state 
transition*) 
grandBinomial=Compile[{{K1,_Integer},{N1,_Integer},{K2,_Inte
ger},{N2,_Integer},{K3,_Integer},{N3,_Integer},{K4,_Integer}
,{N4,_Integer},{prs,_Real}},(Which[N1�0&&K1�0,1,N1�0&&K1≠0,
0,N1≠0,PDF[BinomialDistribution[N1,p1],K1]])*(Which[N2�0&&K
2�0,1,N2�0&&K2≠0,0,N2≠0,PDF[BinomialDistribution[N2,p2],K2]
])*(Which[N3�0&&K3�0,1,N3�0&&K3≠0,0,N3≠0,PDF[BinomialDistri
bution[N3,p21],K3]])*(Which[N4�0&&K4�0,1,N4�0&&K4≠0,0,N4≠0,
PDF[BinomialDistribution[N4,prs],K4]])]; 
(*pValues are the probability of a given state transition*) 
DistributeDefinitions[grandBinomial,maxn21,binomial]; 
 3462661586 
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 (*Here we enter the master loop that increments key model 
inputs including inventory level*) 
Do[ 
  Do[ 
    Do[ 
      
     
imax=s1+Min[s2,n1];jmax=s2;kmax=n1;v1max=n1;v2max=n1;w1max=n
2+s2;w2max=n2+s2; 
     (*Next we fill up the array of permissable states by 
applying our state variable rules*) 
     If[ps≤ 0.5||ps≥ 0.75, 
      Clear[locator]; 
      validstates=({ 
         {s1, s2, 0, 0, 0} 
        }); 
      locator[s1,s2,0,0,0]=1; 
      target=({ 
         {0, 0, 0, 0, 0} 
        }); 
      basestates=validstates; 
      For[flag=1,flag≤Length[basestates],flag++, 
       For[m1=0,m1≤Min[n1-
basestates[[flag,3]]+Min[0,basestates[[flag,1]]],4],m1++, 
        For 
[m2=0,m2≤Min[n2+Min[0,basestates[[flag,2]]],4],m2++, 
         For[m21=0,m21≤Min[basestates[[flag,3]],5],m21++, 
          
For[n21=innerflag[basestates[[flag,1]],basestates[[flag,2]],
basestates[[flag,4]],basestates[[flag,5]],m1, m2, 
m21,ps],n21≤ 
maxn21[basestates[[flag,1]],basestates[[flag,2]],basestates[
[flag,4]],basestates[[flag,5]],m1,m2,m21,ps],n21++, 
           i=basestates[[flag,1]]+basestates[[flag,4]]-m1-
m21+n21; 
           j=basestates[[flag,2]]+basestates[[flag,5]]-m2-
n21; 
           k=basestates[[flag,3]]-m21+n21; 
           v2=If[s1-basestates[[flag,1]]-
basestates[[flag,4]]≤ 0,0,s1-basestates[[flag,1]]-
basestates[[flag,4]]]; 
           w2=If[s2-basestates[[flag,2]]-
basestates[[flag,5]]≤ 0,0,s2-basestates[[flag,2]]-
basestates[[flag,5]]]; 
           v1=v2; 
           w1=w2; 
           target=({ 
              {i, j, k, v1, w1} 
             }); 
           If[Head[locator[i,j,k,v1,w1]]�  
Integer,Break[]];basestates=AppendTo[basestates,Part[target,
1]]; 
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           locator[i,j,k,v1,w1]=Length[basestates] 
            
           ] 
          ] 
         ] 
        ];Monitor[completion2=flag,completion2]; 
       ]]; 
     Print["s1=",s1,"   s2=",s2,"   ps=",ps]; 
     Print["Number of unique states = ",Length[basestates]]; 
     numberofcells=Length[basestates]; 
      
     (*Next we set up a sparse array for the transition 
probability matrix and fill it with the appropriate values*) 
     Do[ 
      Print["Doing P21=  ",p21]; 
      Print["Number of states  ",Length[basestates]]; 
      
A=SparseArray[Table[0,{a,numberofcells},{b,numberofcells}]]; 
      For[row=1,row≤numberofcells,row++, 
       
oldi=basestates[[row,1]];oldj=basestates[[row,2]];oldk=bases
tates[[row,3]]; 
       oldv1=basestates[[row,4]];oldw1=basestates[[row,5]]; 
       q1=n1-oldk+Min[0,oldi]; 
       q2=n2+Min[0,oldj]; 
       q21=oldk; 
       For[m1=0,m1≤Min[n1-oldk+Min[0,oldi],4],m1++, 
         For [m2=0,m2≤Min[n2+Min[0,oldj],4],m2++, 
          For[m21=0,m21≤Min[oldk,5],m21++, 
           (*start=innerflag[oldi,oldj,oldv1,oldw1,m1, m2, 
m21,ps];*) 
           nX21=maxn21[oldi,oldj,oldv1,oldw1,m1,m2,m21,ps]; 
           For[n21=innerflag[oldi,oldj,oldv1,oldw1,m1, m2, 
m21,ps],n21≤nX21,n21++, 
            i=oldi+oldv1-m1-m21+n21; 
            j=oldj+oldw1-m2-n21; 
            k=oldk-m21+n21; 
            v2=If[s1-basestates[[row,1]]-
basestates[[row,4]]≤ 0,0,s1-basestates[[row,1]]-
basestates[[row,4]]]; 
            w2=s2-basestates[[row,2]]-basestates[[row,5]]; 
            v1=v2; 
            w1=w2; 
            If[Head[locator[i,j,k,v1,w1]]≠ 
Integer,Break[],column=locator[i,j,k,v1,w1]]; 
            
A[[row,column]]=A[[row,column]]+grandBinomial[m1,q1,m2,q2,m2
1,q21,n21,nX21,ps]; 
             
            ] 
           ] 
          ] 
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         ]Monitor[completion=row,completion]; 
       ]; 
      (*Next we validate the matrix by testing that the rows 
all sum to 1*) 
      Rowsum=Table[0,{numberofcells}]; 

      Do[Rowsum[[x]]=
,{x,1,numberofcells}] ; 
      Print["Check on row sums =   ",(

)/numberofcells]; 
      (*Next we manipulate the matrix to create the set of 
simulataneous equations for determining the value of PI 
variables*) 
      ψ=Table[Π[kount1],{kount1,1,Length[Rowsum]}]; 
      φ=ReplacePart[ψ,numberofcells→1]; 
      unity=Table[1,{kount1,1,numberofcells}]; 
      AT=Transpose[A];Clear[A]; 
      CF=ReplacePart[AT,Part[numberofcells]→unity]; 
      Clear[AT]; 
      equations=Thread[CF.ψ�φ];Clear[φ,CF]; 
      Πrules=Solve[equations,ψ];Clear[ψ]; 
      PI=Table[Π[kount1] /. 
Πrules,{kount1,1,Length[Rowsum]}]; 
      I1:=0;I2=0;IT=0; 
      For 
[a=1,a≤numberofcells,a++,I1=If[Part[basestates[[a]],1]>0,I1+
Part[basestates[[a]],1]*Part[PI[[a]],1],I1]];I1; 
      For 
[a=1,a≤numberofcells,a++,I2=If[Part[basestates[[a]],2]>0,I2+
Part[basestates[[a]],2]*Part[PI[[a]],1],I2]];I2; 
       
      V1:=0;V2=0;W1=0;W2=0; 
      For 
[a=1,a≤numberofcells,a++,V1=V1+Part[basestates[[a]],4]*Part[
PI[[a]],1]]; 
       
      For 
[a=1,a≤numberofcells,a++,W1=W1+Part[basestates[[a]],5]*Part[
PI[[a]],1]]; 
       
      ∆=0; 
      For 
[a=1,a≤numberofcells,a++,∆=∆+Part[basestates[[a]],3]*Part[P
I[[a]],1]];∆; 
      E1=0;For 
[a=1,a≤numberofcells,a++,E1=If[Part[basestates[[a]],1]<0,E1+

‚
y=1

numberofcells

A@@x , yDD

‚
kount1=1

numberofcells

Rowsum@@kount1DD
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Part[PI[[a]],1],E1]];E1; 
      E2=0;For 
[a=1,a≤numberofcells,a++,E2=If[Part[basestates[[a]],2]<0,E2+
Part[PI[[a]],1],E2]];E2; 
      E12=0;For 
[a=1,a≤numberofcells,a++,E12=If[Part[basestates[[a]],1]<0||P
art[basestates[[a]],2]<0,E12+Part[PI[[a]],1],E12]];E12; 
      F1=1-E1;F2=1-E2;F12=1-E12; 
      B1=0;For 
[a=1,a≤numberofcells,a++,B1=If[Part[basestates[[a]],1]<0,B1-
Part[basestates[[a]],1]*Part[PI[[a]],1],B1]]; 
      B2=0;For 
[a=1,a≤numberofcells,a++,B2=If[Part[basestates[[a]],2]<0,B2-
Part[basestates[[a]],2]*Part[PI[[a]],1],B2]]; 
      
AppendTo[results,{I1,I2,∆,V1,W1,F1,F2,F12,B1,B2,s1,s2,ps,p21
}];Export["excelresultswithorders106.xls",results]; 
      , 
      
{p21,{.05,.1}}];Export["excelresultswithorders105.xls",resul
ts], 
     {ps,1,1}] 
    , 
    {s1,4,4}];, 
  {s2,2,2}]; 
 
  
 
excelresults=results; 
 results=Drop[results,1]; 
 resultslength=Length[results] 
 
Export["substitutionoutputwithorders105.XLS",excelresults,"X
LS"] 
 substitutionoutputwithorders105.XLS 

Next we prepare the plotting data 

 check=  
 1. 
 stoptime=DateString[]; 
 
processtime=AbsoluteTime[stoptime]-AbsoluteTime[starttime]; 
Print["Total Evaluation Time =  ",processtime,"  seconds"] 
 "Total Evaluation Time =  " 7372 "  seconds" 

   

 

‚
e=1

numberofcells

Part@PI@@eDD, 1D
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APPENDIX B 
 

MATHEMATICA CODE FOR THE GENERAL 
 

SUBSTITUTION MODEL 
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ClearAll["Global`*"] 

First we develop the base matrix of available states.In order to facilitate later 

manipulation and optimization we will program the possible cells as functions of the 

form state[i, j, k] 
 datatable={}; 
 datatable=AppendTo[datatable,Part[({ 
      {"sa", "sb", "sc", "m", "n", "λA", "λB", "µA", "µB", "µC", 
"PA", "PB", "fillrateT", "inventoryA", "inventoryB", "inventoryC", 
"backorderA", "backorderB", "fillrateA", "fillrateB"} 
     }),1]]; 
  
Do[Do[Do[Do[Do[ 
      m= 30;n= 30;PB=PA;count=0;counter=0; 
      λB=.6;µA=.1;µB=.1;λA=0.3; 
      elements =(sa+m+1)(sb+n+1)(sc+1); 
       
      Print["elements=",elements]; 
       
      unknowns={}; 
      sumto1=" "; 
       
      For [i=-m,i≤sa,i++, 
       For [j=-n,j≤sb,j++, 
         For [k=0,k≤sc,k++, 
           
If[i�sa&&j�sb&&k�sc,sumto1=sumto1<>ToString[P[i,j,k]]<>"==1", 
             sumto1=sumto1<>ToString[P[i,j,k]]<>"+"]; 
           ]; 
         ]; 
       ]; 
      sumto1=ToExpression[sumto1]; 
      For[i=-m-1,i≤sa+1,i++, 
       For[j=-n-1,j≤sb+1,j++, 
         For[k=-1,k≤sc+1,k++, 
           pUP[i,j,k]=0; 
           pDOWN[i,j,k]=0; 
           pIN[i,j,k]=0; 
           pOUT[i,j,k]=0; 
           pRIGHT[i,j,k]=0; 
           pLEFT[i,j,k]=0; 
           ]; 
         ]; 
       ]; 
      For [i=-m,i≤sa,i++, 
       For [j=-n,j≤sb,j++, 
         For [k=0,k≤sc,k++, 
           pa[i,j,k]=Which[k�0,0,i>0,0,True,PA]; 
           pb[i,j,k]=Which[k�0,0,j>0,0,True,PB]; 
           pUP[i,j,k]=(sa-i)*µA; 
           pLEFT[i,j,k]=(sb-j)*µB; 
           pOUT[i,j,k]=(sc-k)*µC; 
           pDOWN[i,j,k]=Which[i�-m,0,i>0,λA,k�0,λA,True,λA (1-
pa[i,j,k])]; 
           pRIGHT[i,j,k]=Which[j�-n,0,j>0,λB,k�0,λB,True,λB (1-
pb[i,j,k])]; 
           pIN[i,j,k]=Which[i≤0 && j>0 &&k>0,λA*pa[i,j,k],i>0 && j ≤ 
0 && k>0,λB*pb[i,j,k],i≤0 && j≤0 && 
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k>0,λA*pa[i,j,k]+λB*pb[i,j,k],True,0]; 
            
           count=count+1; 
           (*Print[count,  "{",i,",",j,",",k,"}   
","pUP=",pUP[i,j,k],"  pDOWN=",pDOWN[i,j,k],"  pIN=",pIN[i,j,k],"  
pOUT=",pOUT[i,j,k],"  pRIGHT=",pRIGHT[i,j,k],"  
pLEFT=",pLEFT[i,j,k],"  pa=",pa[i,j,k],"  pb=",pb[i,j,k]]*) 
            
           ]; 
         ]; 
       ]; 
      (*Now we have set all the possible states and the movement 
rules for leaving each state. 
        We are going to enforce the condition that, at steady state, 
the rate of movement into a state is exactly equal to the rate of 
movement out of that state.  This will give us a number of equations 
equal to the number of unknowns where the unknowns are the set of 
probabilities for being in each state.  By combining these rules 
with the fact that there is exactly a probability of 1 that we will 
be in some state we can enforce a single unique solution set for the 
probabilities. 
        We are going to cycle through P[i, j, k] and output a 
equation for each unique combination of i, j, k in the domain of all 
sets.  We will create these equations as text and then after all 
done convert the text to an expression so that we may solve the 
family of equations.*) 
      count=0; 
      For [i=-m,i≤sa,i++, 
       For [j=-n,j≤sb,j++, 
         For [k=0,k≤sc,k++, 
           count=count+1; 
           AppendTo[unknowns,P[i,j,k]]; 
           
eqn[count]=P[i,j,k]*(pUP[i,j,k]+pDOWN[i,j,k]+pIN[i,j,k]+pOUT[i,j,k]+
pRIGHT[i,j,k]+pLEFT[i,j,k])� P[i-1,j,k]*pUP[i-
1,j,k]+P[i+1,j,k]*pDOWN[i+1,j,k]+P[i,j,k+1]*pIN[i,j,k+1]+P[i,j,k-
1]*pOUT[i,j,k-1]+P[i,j+1,k]*pRIGHT[i,j+1,k]+P[i,j-1,k]*pLEFT[i,j-
1,k]; 
           ]; 
         ]; 
       ]; 
      equations=Table[eqn[kount],{kount,1,elements}]; 
      Drop[equations,1]; 
      AppendTo[equations,sumto1]; 
      MatrixForm[%]; 
      unknowns; 
      probabilities=Solve[equations,unknowns]; 
      SteadyState=Table[unknowns[counter] /. 
probabilities,{counter,1}]; 
      MatrixForm[%]; 
      inventoryA=0; 
      inventoryB=0; 
      inventoryC=0; 
      backorderA=0; 
      backorderB=0; 
      fillrateA=0; 
      fillrateB=0; 
      fillrateT=0; 
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      For [i=-m,i≤sa,i++, 
       For [j=-n,j≤sb,j++, 
         For [k=0,k≤sc,k++, 
           inventoryA=inventoryA+If[i>0,i*P[i,j,k] /. 
probabilities,0]; 
           inventoryB=inventoryB+If[j>0,j*P[i,j,k] /. 
probabilities,0]; 
           inventoryC=inventoryC+If[k>0,k*P[i,j,k] /. 
probabilities,0]; 
           backorderA=backorderA+If[i≤0,-i*P[i,j,k] /. 
probabilities,0]; 
           backorderB=backorderB+If[j≤0,-j*P[i,j,k] /. 
probabilities,0]; 
           fillrateA=fillrateA+If[i≥0,P[i,j,k] /. probabilities,0]; 
           fillrateB=fillrateB+If[j≥0,P[i,j,k] /. probabilities,0]; 
           fillrateT=fillrateT+If[j≥0 && i≥0,P[i,j,k] /. 
probabilities,0]; 
            
            
           ]; 
         ]; 
       ]; 
      inventoryC=If[sc�0||PA�0,{0},inventoryC]; 
      outputvector=Part[({ 
          {sa, sb, sc, m, n, λA, λB, µA, µB, µC, PA, PB, 
Part[fillrateT,1], Part[inventoryA,1], Part[inventoryB,1], 
Part[inventoryC,1], Part[backorderA,1], Part[backorderB,1], 
Part[fillrateA,1], Part[fillrateB,1]} 
         }),1]; 
      
datatable=AppendTo[datatable,outputvector];Print["sb=",sb];,{sb,3,8}
];Export["generaldatasc5part2.xls",datatable];Print["sa=",sa];,{sa,3
,8}];Print["sc=",sc];,{sc,1,3}];Print["PA=",PA];,{PA,.5,1,.5}];Print
["µC=",µC];,{µC,{.2}}]; 
  
 Export["generaldatapart2copy.xls",datatable2]; 
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